A Search for Neutron to Mirror Neutron Oscillation Using Neutron Electric Dipole Moment Measurements
Abstract
1. Introduction
2. Prior Measurements in Search of Oscillation
3. Measuring the Precession Frequency of the Neutron
3.1. Using Co-Magnetometer: Measuring Ratio of Precession Frequencies
3.2. Systematic Corrections to
3.3. Crossing Point Analysis
4. Constraints on Oscillation
5. Discussion of the Results
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, T.D.; Yang, C.-N.; Lee, T.D.; Yang, C.-N. Question of Parity Conservation in Weak Interactions. Phys. Rev. 1956, 104, 254–258. [Google Scholar] [CrossRef]
- Kobzarev, I.Y.; Okun, L.B.; Pomeranchuk, I.Y. On the possibility of experimental observation of mirror particles. Sov. J. Nucl. Phys. 1966, 3, 837. [Google Scholar]
- Pavšič, M. External inversion, internal inversion, and reflection invariance. Int. J. Theor. Phys. 1974, 9, 229. [Google Scholar] [CrossRef]
- Foot, R.; Lew, H.; Volkas, R.R. A model with fundamental improper spacetime symmetries. Phys. Lett. B 1991, 272, 67–70. [Google Scholar] [CrossRef]
- Foot, R.; Lew, H.; Volkas, R.R. Possible Consequences of Parity Conservation. Mod. Phys. Lett. A 1992, 07, 2567–2574. [Google Scholar] [CrossRef]
- Khlopov, M.Y.; Beskin, G.M.; Bochkarev, N.G.; Pustilnik, L.A.; Pustilnik, S.A. Observational Physics of the Mirror World. Soviet Astronomy 1991, 35, 21. [Google Scholar]
- Hodges, H.M. Mirror baryons as the dark matter. Phys. Rev. D 1993, 47, 456–459. [Google Scholar] [CrossRef]
- Foot, R.; Volkas, R.R. Was ordinary matter synthesized from mirror matter? An attempt to explain why ΩB ≈ 0.2Ωdark. Phys. Rev. D 2003, 68, 021304. [Google Scholar] [CrossRef]
- Foot, R. Experimental Implications of Mirror Matter-Type Dark Matter. Int. J. Mod. Phys. A 2004, 19, 3807–3818. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Ciarcelluti, P.; Comelli, D.; Villante, F.L. Structure Formation with Mirror Dark Matter: CMB and LSS. Int. J. Mod. Phys. D 2005, 14, 107. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Ciarcelluti, P.; Cassisi, S.; Pietrinferni, A. Evolutionary and structural properties of mirror star MACHOs. Astropart. Phys. 2006, 24, 495. [Google Scholar] [CrossRef]
- Berezhiani, Z. Marriage between the Baryonic and Dark Matters. AIP Conf. Proc. 2006, 878, 195. [Google Scholar] [CrossRef]
- Foot, R. Comprehensive analysis of the dark matter direct detection experiments in the mirror dark matter framework. Phys. Rev. D 2010, 82, 095001. [Google Scholar] [CrossRef]
- Foot, R. Mirror dark matter interpretations of the DAMA, CoGeNT, and CRESST-II data. Phys. Rev. D 2012, 86, 023524. [Google Scholar] [CrossRef]
- Addazi, A.; Berezhiani, Z.; Bernabei, R.; Belli, P.; Cappella, F.; Cerulli, R.; Incicchitti, A. DAMA annual modulation effect and asymmetric mirror matter. Euro. Phys. J. C 2015, 75, 400. [Google Scholar] [CrossRef]
- Cerulli, R.; Villar, P.; Cappella, F.; Bernabei, R.; Belli, P.; Incicchitti, A.; Addazi, A.; Berezhiani, Z. DAMA annual modulation and mirror Dark Matter. Euro. Phys. J. C 2017, 77, 83. [Google Scholar] [CrossRef]
- Berezhiani, Z. Unified Picture of the Particle and Sparticle Masses in SUSY GUT. Phys. Lett. B 1998, 417, 287. [Google Scholar] [CrossRef]
- Berezhiani, Z.G.; Kaufmann, L.; Panci, P.; Rossi, N.; Rubbia, A.; Sakharov, A.S. Strongly interacting mirror dark matter, CERN Report #: CERN-PH-TH-2008-108. 2008. Available online: https://cds.cern.ch/record/1162182 (accessed on 29 November 2021).
- Berezinsky, V.; Narayan, M.; Vissani, F. Mirror model for sterile neutrinos. Nucl. Phys. B 2003, 658, 254–280. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Mohapatra, R.N. Reconciling present neutrino puzzles: Sterile neutrinos as mirror neutrinos. Phys. Rev. D 1995, 52, 6607. [Google Scholar] [CrossRef]
- Foot, R.; Volkas, R.R. Neutrino physics and the mirror world: How exact parity symmetry explains the solar neutrino deficit, the atmospheric neutrino anomaly, and the LSND experiment. Phys. Rev. D 1995, 52, 6595. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B.; Khlopov, M.Y. The neutrino mass in elementary-particle physics and in big bang cosmology. Sov. Phys. Usp. 1981, 24, 755–774. [Google Scholar] [CrossRef]
- Akhmedov, E.K.; Berezhiani, Z.; Senjanovic, G. Planck-scale physics and neutrino masses. Phys. Rev. Lett. 1992, 69, 3013–3016. [Google Scholar] [CrossRef]
- Silagadze, Z.K. Neutrino mass and mirror universe. Phys. Atom. Nucl. 1997, 60, 272. [Google Scholar]
- Holdom, B. Two U(1)’S and ϵ charge shifts. Phys. Lett. B 1986, 166, 196. [Google Scholar] [CrossRef]
- Glashow, S.L. Positronium versus the mirror universe. Phys. Lett. B 1986, 167, 35. [Google Scholar] [CrossRef]
- Foot, R.; Ignatiev, A.Y.; Volkas, R.R. Physics of mirror photons. Phys. Lett. B 2001, 503, 355. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Lepidi, A. Cosmological bounds on the millicharges of mirror particles. Phys. Lett. B 2009, 681, 276. [Google Scholar] [CrossRef]
- Gninenko, S.N. Limit on disappearance of orthopositronium in vacuum. Phys. Lett. B 1994, 326, 317. [Google Scholar] [CrossRef]
- Foot, R.; Gninenko, S.N. Can the mirror world explain the ortho-positronium lifetime puzzle? Phys. Lett. B 2000, 480, 171. [Google Scholar] [CrossRef]
- Gninenko, S.N. An Apparatus To Search For Mirror Dark Matter. Int. J. Mod. Phys. A 2004, 19, 3833. [Google Scholar] [CrossRef]
- Gninenko, S.N.; Krasnikov, N.V.; Matveev, V.A.; Rubbia, A. Some aspects of positronium physics. Phys. Part. Nucl. 2006, 37, 321. [Google Scholar] [CrossRef]
- Badertscher, A.; Crivelli, P.; Fetscher, W.; Gendotti, U.; Gninenko, S.N.; Postoev, V.; Rubbia, A.; Samoylenko, V.; Sillou, D. Improved limit on invisible decays of positronium. Phys. Rev. D 2007, 75, 032004. [Google Scholar] [CrossRef]
- Crivelli, P.; Belov, A.; Gendotti, U.; Gninenko, S.; Rubbia, A. Positronium portal into hidden sector: A new experiment to search for mirror dark matter. J. Instrum. 2010, 5, P08001. [Google Scholar] [CrossRef]
- Vigo, C.; Gerchow, L.; Liszkay, L.; Rubbia, A.; Crivelli, P. First search for invisible decays of orthopositronium confined in a vacuum cavity. Phys. Rev. D 2018, 97, 092008. [Google Scholar] [CrossRef]
- Sakharov, A.D. Violation of CP-Invariance, C-Asymmetry, and Baryon Asymmetry of the Universe. JETP Lett. 1967, 5, 24. [Google Scholar] [CrossRef]
- Kuzmin, V.A. CP violation and baryon asymmetry of the universe. JETP Lett. 1970, 12, 335–337. [Google Scholar]
- Nishijima, K.; Saffouri, M.H. CP Invariance and the Shadow Universe. Phys. Rev. Lett. 1965, 14, 205. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Comelli, D.; Villante, F.L. The early mirror universe: Inflation, baryogenesis, nucleosynthesis and dark matter. Phys. Lett. B 2001, 503, 362–375. [Google Scholar] [CrossRef]
- Bento, L.; Berezhiani, Z. Leptogenesis via Collisions: Leaking Lepton Number to the Hidden Sector. Phys. Rev. Lett. 2001, 87, 231304. [Google Scholar] [CrossRef]
- Bento, L.; Berezhiani, Z. Baryon asymmetry, dark matter and the hidden sector. Fortschr. Phys. 2002, 50, 489–495. [Google Scholar] [CrossRef]
- Berezhiani, Z. Neutron-antineutron oscillation and baryonic majoron: Low scale spontaneous baryon violation. Eur. Phys. J. C 2016, 76, 705. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Gazizov, A. Neutron oscillations to parallel world: Earlier end to the cosmic ray spectrum? Eur. Phys. J. C 2012, 72, 2111. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Bento, L. Fast neutron–mirror neutron oscillation and ultra high energy cosmic rays. Phys. Lett. B 2006, 635, 253–259. [Google Scholar] [CrossRef]
- Mohapatra, R.N.; Nasri, S.; Nussinov, S. Some implications of neutron mirror neutron oscillation. Phys. Lett. B 2005, 627, 124. [Google Scholar] [CrossRef]
- Berezhiani, Z. Anti-Dark Matter: A Hidden Face of Mirror World. arXiv 2016, arXiv:1602.08599. [Google Scholar]
- Berezhiani, Z.; Biondi, R.; Mannarelli, M.; Tonelli, F. Neutron-mirror neutron mixing and neutron stars. Euro. Phys. J. C 2021, 81, 1036. [Google Scholar] [CrossRef]
- Mohapatra, R.N.; Marshak, R.E. Local B—L Symmetry of Electroweak Interactions, Majorana Neutrinos, and Neutron Oscillations. Phys. Rev. Lett. 1980, 44, 1316. [Google Scholar] [CrossRef]
- Baldo-Ceolin, M.; Benetti, P.; Bitter, T.; Bobisut, F.; Calligarich, E.; Dolfini, R.; Dubbers, D.; El-Muzeini, P.; Genoni, M.; Gibin, D.; et al. A new experimental limit on neutron-antineutron oscillations. Zeit. Für Physik C 1994, 63, 409. [Google Scholar] [CrossRef]
- Phillips, D.G., II; Snow, W.M.; Babu, K.; Banerjee, S.; Baxter, D.V.; Berezhiani, Z.; Bergevin, M.; Bhattacharya, S.; Brooijmans, G.; Castellanos, L.; et al. Neutron-antineutron oscillations: Theoretical status and experimental prospects. Phys. Rep. 2016, 612, 1. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Vainshtein, A. Neutron-Antineutron Oscillation as a Signal of CP Violation. arXiv 2015, arXiv:1506.05096. [Google Scholar]
- Addazi, A.; Anderson, K.; Ansell, S.; Babu, K.S.; Barrow, J.L.; Baxter, D.V.; Bentley, P.M.; Berezhiani, Z.; Bevilacqua, R.; Biondi, R.; et al. New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the HIBEAM/NNBAR experiment at the European Spallation Source. J. Phys. G 2021, 48, 070501. [Google Scholar] [CrossRef]
- Blinnikov, S.I.; Khlopov, M.Y. On Possible Effects of Mirror Particles. Sov. J. Nucl. Phys. 1982, 36, 472. [Google Scholar]
- Kolb, E.W.; Seckel, D.; Turner, M.S. The shadow world of superstring theories. Nature 1985, 314, 415. [Google Scholar] [CrossRef]
- Carlson, E.D.; Glashow, S.L. Nucleosynthesis versus the mirror universe. Phys. Lett. B 1987, 193, 168. [Google Scholar] [CrossRef]
- Ciarcelluti, P. Cosmology with Mirror Dark Matter I: Linear Evolution of Perturbations. Int. J. Mod. Phys. D 2005, 14, 187–221. [Google Scholar] [CrossRef]
- Ciarcelluti, P. Cosmology with Mirror Dark Matter II: Cosmic Microwave Background and Large Scale Structure. Int. J. Mod. Phys. D 2005, 14, 223–256. [Google Scholar] [CrossRef]
- Das, C.R.; Laperashvili, L.V.; Nielsen, H.B.; Tureanu, A. Baryogenesis in cosmological model with superstring-inspired E6 unification. Phys. Lett. B 2011, 696, 138. [Google Scholar] [CrossRef]
- Coc, A.; Uzan, J.-P.; Vangioni, E. Mirror matter can alleviate the cosmological lithium problem. Phys. Rev. D 2013, 87, 123530. [Google Scholar] [CrossRef]
- Coc, A.; Pospelov, M.; Uzan, J.-P.; Vangioni, E. Modified big bang nucleosynthesis with nonstandard neutron sources. Phys. Rev. D 2014, 90, 085018. [Google Scholar] [CrossRef]
- Mohapatra, R.N.; Teplitz, V.L. Structures in the Mirror Universe. Astrophysical J. 1997, 478, 29. [Google Scholar] [CrossRef]
- Foot, R. Have mirror stars been observed? Phys. Lett. B 1999, 452, 83. [Google Scholar] [CrossRef][Green Version]
- Foot, R. Have mirror planets been observed? Phys. Lett. B 1999, 471, 191. [Google Scholar] [CrossRef][Green Version]
- Ignatiev, A.Y.; Volkas, R.R. Mirror dark matter and large scale structure. Phys. Rev. D 2003, 68, 023518. [Google Scholar] [CrossRef]
- Foot, R.; Volkas, R.R. Spheroidal galactic halos and mirror dark matter. Phys. Rev. D 2004, 70, 123508. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Pilo, L.; Rossi, N. Mirror matter, mirror gravity and galactic rotational curves. Euro. Phys. J. C 2010, 70, 305. [Google Scholar] [CrossRef][Green Version]
- Berezhiani, Z.; Dolgov, A.D.; Mohapatra, R.N. Asymmetric inflationary reheating and the nature of mirror universe. Phys. Lett. B 1996, 375, 26. [Google Scholar] [CrossRef]
- Berezhiani, Z. Mirror World and its Cosmological consequences. Int. J. Mod. Phys. A 2004, 19, 3775–3806. [Google Scholar] [CrossRef]
- Das, C.R.; Laperashvili, L.V.; Nielsen, H.B.; Tureanu, A. Mirror world and superstring-inspired hidden sector of the Universe, dark matter and dark energy. Phys. Rev. D 2011, 84, 063510. [Google Scholar] [CrossRef]
- Dvali, G.; Redi, M. Phenomenology of 1032 dark sectors. Phys. Rev. D 2009, 80, 055001. [Google Scholar] [CrossRef]
- Foot, R. Mirror dark matter: Cosmology, galaxy structure and direct detection. Int. J. Mod. Phys. A 2014, 29, 1430013. [Google Scholar] [CrossRef]
- Berezhiani, Z. Through the Looking Glass: Alice’s Adventures in Mirror World. In From Fields to Strings: Circumnavigating Theoretical Physics; Shifman, M., Vainshtein, A., Wheater, J., Eds.; World Scientific: Singapore, 2005; Volume 3, pp. 2147–2195. [Google Scholar] [CrossRef]
- Okun, L.B. Mirror particles and mirror matter: 50 years of speculation and search. Phys. Usp. 2007, 50, 380–389. [Google Scholar] [CrossRef]
- Berezhiani, Z. Unified picture of ordinary and dark matter genesis. Eur. Phys. J. Spec. Top. 2008, 163, 271–289. [Google Scholar] [CrossRef]
- Dubbers, D.; Schmidt, M.G. The neutron and its role in cosmology and particle physics. Rev. Mod. Phys. 2011, 83, 1111. [Google Scholar] [CrossRef]
- Berezhiani, Z. Matter, dark matter, and antimatter in our Universe. Int. J. Mod. Phys. A 2018, 33, 1844034. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Bento, L. Neutron–mirror-neutron oscillations: How fast might they be? Phys. Rev. Lett. 2006, 96, 081801. [Google Scholar] [CrossRef] [PubMed]
- Berezhiani, Z. More about neutron-mirror neutron oscillation. Eur. Phys. J. C 2009, 64, 421. [Google Scholar] [CrossRef]
- Ignatiev, A.Y.; Volkas, R.R. Geophysical constraints on mirror matter within the Earth. Phys. Rev. D 2000, 62, 023508. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Nesti, F. Magnetic anomaly in UCN trapping: Signal for neutron oscillations to parallel world? Eur. Phys. J. C 2012, 72, 1974. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Dolgov, A.D. Generation of large scale magnetic fields at recombination epoch. Astropart. Phys. 2004, 21, 59. [Google Scholar] [CrossRef]
- Khriplovich, I.B.; Lamoreaux, S.K. CP Violation Without Strangeness: Electric Dipole Moments of Particles, Atoms, and Molecules; Springer: Berlin/Heidelberg, Germany, 2012; Available online: http://inspirehep.net/record/460248 (accessed on 29 November 2021).
- Pospelov, M.; Ritz, A. Electric dipole moments as probes of new physics. Ann. Phys. 2005, 318, 119. [Google Scholar] [CrossRef]
- Ramsey, N.F. A Molecular Beam Resonance Method with Separated Oscillating Fields. Phys. Rev. 1950, 78, 695. [Google Scholar] [CrossRef]
- Pokotilovski, Y.N. On the experimental search for neutron → mirror neutron oscillations. Phys. Lett. B 2006, 639, 214. [Google Scholar] [CrossRef]
- Kerbikov, B.; Lychkovskiy, O. Neutron–mirror-neutron oscillations in a trap. Phys. Rev. C 2008, 77, 065504. [Google Scholar] [CrossRef]
- Ban, G.; Bodek, K.; Daum, M.; Henneck, R.; Heule, S.; Kasprzak, M.; Khomutov, N.; Kirch, K.; Kistryn, S.; Knecht, A.; et al. Direct experimental limit on neutron–mirror-neutron oscillations. Phys. Rev. Lett. 2007, 99, 161603. [Google Scholar] [CrossRef]
- Serebrov, A.P.; Aleksandrov, E.B.; Dovator, N.A.; Dmitriev, S.P.; Fomin, A.K.; Geltenbort, P.; Kharitonov, A.G.; Krasnoschekova, I.A.; Lasakov, M.S.; Murashkin, A.N.; et al. Experimental search for neutron - mirror neutron oscillations using storage of ultracold neutrons. Phys. Lett. B 2008, 663, 181–185. [Google Scholar] [CrossRef]
- Serebrov, A.P.; Aleksandrov, E.B.; Dovator, N.A.; Dmitriev, S.P.; Fomin, A.K.; Geltenbort, P.; Kharitonov, A.G.; Krasnoschekova, I.A.; Lasakov, M.S.; Murashkin, A.N.; et al. Search for neutron–mirror neutron oscillations in a laboratory experiment with ultracold neutrons. Nucl. Instrum. Methods Phys. Res. A 2009, 611, 137–140. [Google Scholar] [CrossRef]
- Altarev, I.; Baker, C.A.; Ban, G.; Bodek, K.; Daum, M.; Fierlinger, P.; Geltenbort, P.; Green, K.; van der Grinten, M.G.D.; Gutsmiedl, E.; et al. Neutron to mirror-neutron oscillations in the presence of mirror magnetic fields. Phys. Rev. D 2009, 80, 032003. [Google Scholar] [CrossRef]
- Bodek, K.; Kistryn, S.; Kuźniak, M.; Zejma, J.; Burghoff, M.; Knappe-Grüneberg, S.; Sander-Thoemmes, T.; Schnabel, A.; Trahms, L.; Ban, G.; et al. Additional results from the first dedicated search for neutron–mirror neutron oscillations. Nucl. Instrum. Methods Phys. Res. A 2009, 611, 141. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Biondi, R.; Geltenbort, P.; Krasnoshchekova, I.A.; Varlamov, V.E.; Vassiljev, A.V.; Zherebtsov, O.M. New experimental limits on neutron – mirror neutron oscillations in the presence of mirror magnetic field. Eur. Phys. J. C 2018, 78, 717. [Google Scholar] [CrossRef]
- Biondi, R. Monte Carlo simulation for ultracold neutron experiments searching for neutron–mirror neutron oscillation. Int. J. Mod. Phys. A 2018, 33, 1850143. [Google Scholar] [CrossRef]
- Abel, C.; Ayres, N.; Bison, G.; Bodek, K.; Bondar, V.; Chiu, P.-J.; Daum, M.; Emmenegger, S.; Flaux, P.; Ferraris-Bouchez, L.; et al. Statistical sensitivity of the nEDM apparatus at PSI to neutron mirror-neutron oscillations. EPJ Web Conf. 2019, 219, 07001. [Google Scholar] [CrossRef]
- Mohanmurthy, P. A Search for Neutron to Mirror-Neutron Oscillations. Ph.D. Thesis, ETH, Zurich, Switzerland, 2020. [Google Scholar] [CrossRef]
- Abel, C.; Ayres, N.J.; Ban, G.; Bison, G.; Bodek, K.; Bondar, V.; Chanel, E.; Chiu, P.-J.; Crawford, C.; Daum, M.; et al. A search for neutron to mirror-neutron oscillations using the nEDM apparatus at PSI. Phys. Lett. B 2021, 812, 135993. [Google Scholar] [CrossRef]
- Schmidt, U. An Experimental Limit on Neutron Mirror-Neutron Oscillation. Proceedings of BNLV International Workshop, Berkeley, CA, USA. 2007. Available online: http://inpa-old.lbl.gov/blnv2/files/Saturday/Session13/Schmidt.pdf (accessed on 29 November 2021).
- Ayres, N.J.; Bondar, V.; Emmenegger, S.; Kirch, K.; Krempel, J.; Bison, G.; Chiu, P.-J.; Daum, M.; Lauss, B.; Pais, D.; et al. Search for Neutron to Mirror-Neutron oscillations. Letter of Intent to PSI BVR 51. 2021. Available online: https://indico.psi.ch/event/8337/contributions/23142/attachments/16016/24135/LoI-Mirror-n.pdf (accessed on 29 November 2021).
- Broussard, L.J.; Bailey, K.M.; Bailey, W.B.; Barrow, J.L.; Chance, B.; Crawford, C.; Crow, L.; DeBeer-Schmitt, L.; Fomin, N.; Frost, M.; et al. New Search for Mirror Neutrons at HFIR. arXiv 2017, arXiv:1710.00767. [Google Scholar]
- Broussard, L.J.; Bailey, K.M.; Bailey, W.B.; Barrow, J.L.; Berry, K.; Blose, A.; Crawford, C.; Debeer-Schmitt, L.; Frost, M.; Galindo-Uribarri, A.; et al. New search for mirror neutron regeneration. EPJ Web Conf. 2019, 219, 07002. [Google Scholar] [CrossRef]
- Serebrov, A.P.; Kolomenskiy, E.A.; Pirozhkov, A.N.; Krasnoschekova, I.A.; Vassiljev, A.V.; Polyushkin, A.O.; Lasakov, M.S.; Murashkin, A.N.; Solovey, V.A.; Fomin, A.K.; et al. New search for the neutron electric dipole moment with ultracold neutrons at ILL. Phys. Rev. C 2015, 92, 055501. [Google Scholar] [CrossRef]
- Apostolescu, S.; Ionescu, D.R.; Ionescu-Bujor, M.; Meitert, S.; Petrascu, M. Upper Limit of the Electric Dipole Moment of the Neutron. Rev. Roum. Physiol. 1969, 15, 343–353. [Google Scholar]
- Cohen, V.W.; Nathans, R.; Silsbee, H.B.; Lipworth, E.; Ramsey, N.F. Electric Dipole Moment of the Neutron. Phys. Rev. 1969, 177, 1942. [Google Scholar] [CrossRef]
- Dress, W.B.; Miller, P.D.; Pendlebury, J.M.; Perrin, P.; Ramsey, N.F. Search for an electric dipole moment of the neutron. Phys. Rev. D 1977, 15, 9. [Google Scholar] [CrossRef]
- Baker, C.A.; Chibane, Y.; Chouder, M.; Geltenbort, P.; Green, K.; Harris, P.G.; Heckel, B.R.; Iaydjiev, P.; Ivanov, S.N.; Kilvington, I.; et al. Apparatus for measurement of the electric dipole moment of the neutron using a cohabiting atomic-mercury magnetometer. Nucl. Instrum. Methods Phys. Res. A 2014, 736, 184. [Google Scholar] [CrossRef]
- Afach, S.; Bison, G.; Bodek, K.; Burri, F.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; Grujic, Z.; Hélaine, V.; et al. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute. J. Appl. Phys. 2014, 116, 084510. [Google Scholar] [CrossRef]
- Afach, S.; Ban, G.; Bison, G.; Bodek, K.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; Geltenbort, P.; Grujić, Z.D.; et al. A device for simultaneous spin analysis of ultracold neutrons. Euro. Phys. J. A 2015, 51, 143. [Google Scholar] [CrossRef]
- Ban, G.; Bison, G.; Bodek, K.; Chowdhuri, Z.; Geltenbort, P.; Griffith, W.C.; Hélaine, V.; Henneck, R.; Kasprzak, M.; Kermaidic, Y.; et al. Ultracold neutron detection with 6Li-doped glass scintillators. Euro. Phys. J. A 2016, 52, 326. [Google Scholar] [CrossRef]
- Abel, C.; Afach, S.; Ayres, N.J.; Ban, G.; Bison, G.; Bodek, K.; Bondar, V.; Chanel, E.; Chiu, P.-J.; Crawford, C.B.; et al. Optically pumped Cs magnetometers enabling a high-sensitivity search for the neutron electric dipole moment. Phys. Rev. A 2020, 101, 053419. [Google Scholar] [CrossRef]
- Abel, C.; Ayres, N.J.; Ban, G.; Bison, G.; Bodek, K.; Bondar, V.; Chanel, E.; Chiu, P.J.; Daum, M.; Emmenegger, S.; et al. nEDM experiment at PSI: Data-taking strategy and sensitivity of the dataset. EPJ Web Conf. 2019, 219, 02001. [Google Scholar] [CrossRef][Green Version]
- Abel, C.; Ayres, N.; Baker, T.; Ban, G.; Bison, G.; Bodek, K.; Bondar, V.; Crawford, C.; Chiu, P.-J.; Chanel, E.; et al. Magnetic field uniformity in neutron electric dipole moment experiments. Phys. Rev. A 2019, 99, 042112. [Google Scholar] [CrossRef]
- Abel, C.; Afach, S.; Ayres, N.J.; Baker, C.A.; Ban, G.; Bison, G.; Bodek, K.; Bondar, V.; Burghoff, M.; Chanel, E.; et al. Measurement of the Permanent Electric Dipole Moment of the Neutron. Phys. Rev. Lett. 2020, 124, 081803. [Google Scholar] [CrossRef]
- Addazi, A.; Berezhiani, Z.; Kamyshkov, Y. Gauged B-L number and neutron–antineutron oscillation: Long-range forces mediated by baryophotons. Euro. Phys. J. C 2017, 77, 301. [Google Scholar] [CrossRef]
- Baker, C.A.; Doyle, D.D.; Geltenbort, P.; Green, K.; van der Grinten, M.G.D.; Harris, P.G.; Iaydjiev, P.; Ivanov, S.N.; May, D.J.R.; Pendlebury, J.M. Improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett. 2006, 98, 149102. [Google Scholar] [CrossRef]
- Afach, S.; Baker, C.A.; Ban, G.; Bison, G.; Bodek, K.; Burghoff, M.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; et al. A measurement of the neutron to 199Hg magnetic moment ratio. Phys. Lett. B 2014, 739, 128. [Google Scholar] [CrossRef]
- Pendlebury, J.M.; Heil, W.; Sobolev, Y.; Harris, P.G.; Richardson, J.D.; Baskin, R.J.; Doyle, D.D.; Geltenbort, P.; Green, K.; van der Grinten, M.G.D.; et al. Geometric-phase-induced false electric dipole moment signals for particles in traps. Phys. Rev. A 2004, 70, 032102. [Google Scholar] [CrossRef]
- Graner, B.; Chen, Y.; Lindahl, E.G.; Heckel, B.R. Reduced Limit on the Permanent Electric Dipole Moment of 199Hg. Phys. Rev. Lett. 2016, 116, 161601. [Google Scholar] [CrossRef]
- Pignol, G.; Guigue, M.; Petukhov, A.; Golub, R. Frequency shifts and relaxation rates for spin-1/2 particles moving in electromagnetic fields. Phys. Rev. A 2015, 92, 053407. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C. Théorie quantique du cycle de pompage optique - Vérification expérimentale des nouveaux effets prévus. Ann. Phys. 1962, 13, 423. [Google Scholar] [CrossRef]
- Abragam, A.; Goldman, M. Nuclear Magnetism: Order and Disorder; Clarendon Press: Oxford, UK, 1982; Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:13681747 (accessed on 29 November 2021).
- Sears, V.F. Neutron scattering lengths and cross sections. Neutron News 1992, 3, 26. [Google Scholar] [CrossRef]
- Piegsa, F.M. New concept for a neutron electric dipole moment search using a pulsed beam. Phys. Rev. C 2013, 88, 045502. [Google Scholar] [CrossRef]
- Serebrov, A. Present status and future prospects of n-EDM experiment of PNPI-ILL-PTI collaboration. Proc. Sci. 2017, 281, 179. [Google Scholar] [CrossRef]
- Wurm, D.; Beck, D.H.; Chupp, T.; Degenkolb, S.; Fierlinger, K.; Fierlinger, P.; Filter, H.; Ivanov, S.; Klau, C.; Kreuz, M.; et al. The PanEDM neutron electric dipole moment experiment at the ILL. EPJ Web Conf. 2019, 219, 02006. [Google Scholar] [CrossRef]
- Kuchler, F. Searches for Electric Dipole Moments—Overview of Status and New Experimental Efforts. Universe 2019, 5, 56. [Google Scholar] [CrossRef]
- Ito, T.M.; Adamek, E.R.; Callahan, N.B.; Choi, J.H.; Clayton, S.M.; Cude-Woods, C.; Currie, S.; Ding, X.; Fellers, D.E.; Geltenbort, P.; et al. Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment. Phys. Rev. C 2018, 97, 012501. [Google Scholar] [CrossRef]
- Ahmed, M.W.; Alarcon, R.; Aleksandrova, A.; Baeßler, S.; Barron-Palos, L.; Bartoszek, L.M.; Beck, D.H.; Behzadipour, M.; Berkutov, I.; Bessuille, J.; et al. A new cryogenic apparatus to search for the neutron electric dipole moment. J. Instrum. 2019, 14, P11017. [Google Scholar] [CrossRef]
- Ayres, N.J.; Ban, G.; Bienstman, L.; Bison, G.; Bodek, K.; Bondar, V.; Bouillaud, T.; Chanel, E.; Chen, J.; Chiu, P.-J.; et al. The design of the n2EDM experiment. Euro. Phys. J. C 2021, 81, 512. [Google Scholar] [CrossRef]
Errors from | ||
---|---|---|
Crossing point analysis | 107 | 138 |
14 | 18 | |
10 | 13 | |
5 | 6 | |
Hg-EDM | ||
Dipole contaminants | 4 | 5 |
Net rotational motion () | 2 | 3 |
drifts | 10 | |
7 | 9 | |
TOTAL | 110 | 140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohanmurthy, P.; Young, A.R.; Winger, J.A.; Zsigmond, G. A Search for Neutron to Mirror Neutron Oscillation Using Neutron Electric Dipole Moment Measurements. Symmetry 2022, 14, 487. https://doi.org/10.3390/sym14030487
Mohanmurthy P, Young AR, Winger JA, Zsigmond G. A Search for Neutron to Mirror Neutron Oscillation Using Neutron Electric Dipole Moment Measurements. Symmetry. 2022; 14(3):487. https://doi.org/10.3390/sym14030487
Chicago/Turabian StyleMohanmurthy, Prajwal, Albert R. Young, Jeff A. Winger, and Geza Zsigmond. 2022. "A Search for Neutron to Mirror Neutron Oscillation Using Neutron Electric Dipole Moment Measurements" Symmetry 14, no. 3: 487. https://doi.org/10.3390/sym14030487
APA StyleMohanmurthy, P., Young, A. R., Winger, J. A., & Zsigmond, G. (2022). A Search for Neutron to Mirror Neutron Oscillation Using Neutron Electric Dipole Moment Measurements. Symmetry, 14(3), 487. https://doi.org/10.3390/sym14030487