# Backward vs. Forward Gait Symmetry Analysis Based on Plantar Pressure Mapping

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Participants

^{2}.

#### 2.2. Measurement Procedures

^{2}with a frequency of 100 Hz (Figure 1). A calibration procedure was performed using step procedure separately for each participant according to the protocol of Hsiao et al. [20] and the manufacturer’s guidelines. The test consisted of walking a distance of 10 m forward and backward three times along a predefined path. The tested person had to walk a designated distance with a comfortable speed while looking forward. In addition, subjects were asked not to turn their head while walking backward. After two trial runs to familiarise the test person with this type of gait and the measuring equipment, measurements were recorded during the third run. The average result was calculated from the 8–10 gait cycles, thus reducing any measurement error due to the different gait speeds. The first and the last steps were excluded from the analysis.

#### 2.3. Calculation Methods

- Delta (Δ):

_{α}and X

_{β}, where, ∀α,β X

_{α}> X

_{β}. It means that in this study we analysed symmetry/asymmetry, without taking into consideration the side (left/right or dominant/non-dominant).

- 2.
- Modified Ratio Index (RI):

- 3.
- Symmetry Index (SI, also called Robinson Index):

- 4.
- Gait Asymmetry (GA):

- 5.
- Symmetry Angle (SA):

#### 2.4. Statistical Analysis

#### 2.5. Ethical Approval

## 3. Results

#### 3.1. Delta

#### 3.2. Modified Ratio Index

#### 3.3. Symmetry Index (Robinson Index)

#### 3.4. Gait Asymmetry

#### 3.5. Symmetry Angle

#### 3.6. Correlation Analysis

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Vaughan, C.L.; Davis, B.L.; O’Connor, J.C. Dynamics of Human Gait; Kiboho Publishers: Cape Town, South Africa, 1999; ISBN 978-0-620-23558-7. [Google Scholar]
- Prosser, L.A.; Lauer, R.T.; VanSant, A.F.; Barbe, M.F.; Lee, S.C.K. Variability and Symmetry of Gait in Early Walkers with and without Bilateral Cerebral Palsy. Gait Posture
**2010**, 31, 522–526. [Google Scholar] [CrossRef] [PubMed][Green Version] - Seminati, E.; Nardello, F.; Zamparo, P.; Ardigò, L.P.; Faccioli, N.; Minetti, A.E. Anatomically Asymmetrical Runners Move More Asymmetrically at the Same Metabolic Cost. PLoS ONE
**2013**, 8, e74134. [Google Scholar] [CrossRef] [PubMed][Green Version] - Zagrodny, B.; Ludwicki, M.; Wojnicz, W.; Mrozowski, J.; Awrejcewicz, J. Cooperation of Mono-and Bi-Articular Muscles: Human Lower Limb. J. Musculoskelet. Neuronal Interact.
**2018**, 18, 176–182. [Google Scholar] [PubMed] - Sadeghi, H. Local or Global Asymmetry in Gait of People without Impairments. Gait Posture
**2003**, 17, 197–204. [Google Scholar] [CrossRef] - Zifchock, R.A.; Davis, I.; Higginson, J.; Royer, T. The Symmetry Angle: A Novel, Robust Method of Quantifying Asymmetry. Gait Posture
**2008**, 27, 622–627. [Google Scholar] [CrossRef] [PubMed] - Sadeghi, H.; Allard, P.; Prince, F.; Labelle, H. Symmetry and Limb Dominance in Able-Bodied Gait: A Review. Gait Posture
**2000**, 12, 34–45. [Google Scholar] [CrossRef] - Bollens, B.; Crevecoeur, F.; Detrembleur, C.; Warlop, T.; Lejeune, T.M. Variability of Human Gait: Effect of Backward Walking and Dual-Tasking on the Presence of Long-Range Autocorrelations. Ann. Biomed. Eng.
**2014**, 42, 742–750. [Google Scholar] [CrossRef] - Meyns, P.; Desloovere, K.; Molenaers, G.; Swinnen, S.P.; Duysens, J. Interlimb Coordination during Forward and Backward Walking in Primary School-Aged Children. PLoS ONE
**2013**, 8, e62747. [Google Scholar] [CrossRef] [PubMed][Green Version] - Meyns, P.; Molenaers, G.; Desloovere, K.; Duysens, J. Interlimb Coordination during Forward Walking Is Largely Preserved in Backward Walking in Children with Cerebral Palsy. Clin. Neurophysiol.
**2014**, 125, 552–561. [Google Scholar] [CrossRef] - Grasso, R.; Bianchi, L.; Lacquaniti, F. Motor Patterns for Human Gait: Backward Versus Forward Locomotion. J. Neurophysiol.
**1998**, 80, 1868–1885. [Google Scholar] [CrossRef][Green Version] - Minetti, A.E.; Ardigò, L.P. The Transmission Efficiency of Backward Walking at Different Gradients. Pflug. Arch. Eur. J. Physiol.
**2001**, 442, 542–546. [Google Scholar] [CrossRef] [PubMed] - Mahaki, M.; De Sá E Souza, G.S.; Mimar, R.; Vieira, M.F. The Comparison of Ground Reaction Forces and Lower Limb Muscles Correlation and Activation Time Delay between Forward and Backward Walking. Gait Posture
**2017**, 58, 380–385. [Google Scholar] [CrossRef] [PubMed] - Kurz, M.J.; Wilson, T.W.; Arpin, D.J. Stride-Time Variability and Sensorimotor Cortical Activation during Walking. NeuroImage
**2012**, 59, 1602–1607. [Google Scholar] [CrossRef] [PubMed] - Lin, N.-H.; Liu, C.-H.; Lee, P.; Guo, L.-Y.; Sung, J.-L.; Yen, C.-W.; Liaw, L.-J. Backward Walking Induces Significantly Larger Upper-Mu-Rhythm Suppression Effects Than Forward Walking Does. Sensors
**2020**, 20, 7250. [Google Scholar] [CrossRef] [PubMed] - Lee, M.; Kim, J.; Son, J.; Kim, Y. Kinematic and Kinetic Analysis during Forward and Backward Walking. Gait Posture
**2013**, 38, 674–678. [Google Scholar] [CrossRef] [PubMed] - Fritz, N.E.; Worstell, A.M.; Kloos, A.D.; Siles, A.B.; White, S.E.; Kegelmeyer, D.A. Backward Walking Measures Are Sensitive to Age-Related Changes in Mobility and Balance. Gait Posture
**2013**, 37, 593–597. [Google Scholar] [CrossRef] - Viteckova, S.; Kutilek, P.; Svoboda, Z.; Krupicka, R.; Kauler, J.; Szabo, Z. Gait Symmetry Measures: A Review of Current and Prospective Methods. Biomed. Signal Processing Control
**2018**, 42, 89–100. [Google Scholar] [CrossRef] - Hsiao, H.; Guan, J.; Weatherly, M. Accuracy and Precision of Two In-Shoe Pressure Measurement Systems. Ergonomics
**2002**, 45, 537–555. [Google Scholar] [CrossRef] - Xu, C.; Wen, X.-X.; Huang, L.-Y.; Shang, L.; Cheng, X.-X.; Yan, Y.-B.; Lei, W. Normal Foot Loading Parameters and Repeatability of the Footscan
^{®}Platform System. J. Foot Ankle Res.**2017**, 10, 30. [Google Scholar] [CrossRef][Green Version] - Keijsers, N.L.W.; Stolwijk, N.M.; Pataky, T.C. Linear Dependence of Peak, Mean, and Pressure-Time Integral Values in Plantar Pressure Images. Gait Posture
**2010**, 31, 140–142. [Google Scholar] [CrossRef] - Wafai, L.; Zayegh, A.; Woulfe, J.; Aziz, S.; Begg, R. Identification of Foot Pathologies Based on Plantar Pressure Asymmetry. Sensors
**2015**, 15, 20392–20408. [Google Scholar] [CrossRef][Green Version] - Seliktar, R.; Mizrahi, J. Some Gait Characteristics of Below-Knee Amputees and Their Reflection on the Ground Reaction Forces. Eng. Med.
**1986**, 15, 27–34. [Google Scholar] [CrossRef] - Andres, R.O.; Stimmel, S.K. Prosthetic Alignment Effects on Gait Symmetry: A Case Study. Clin. Biomech.
**1990**, 5, 88–96. [Google Scholar] [CrossRef] - Plotnik, M.; Giladi, N.; Hausdorff, J.M. A New Measure for Quantifying the Bilateral Coordination of Human Gait: Effects of Aging and Parkinson’s Disease. Exp. Brain Res.
**2007**, 181, 561–570. [Google Scholar] [CrossRef] - Błażkiewicz, M.; Wiszomirska, I.; Wit, A. Comparison of Four Methods of Calculating the Symmetry of Spatial-Temporal Parameters of Gait. Acta Bioeng. Biomech.
**2014**, 16, 29–35. [Google Scholar] [CrossRef] - Kastavelis, D.; Mukherjee, M.; Decker, L.M.; Stergiou, N. Variability of Lower Extremity Joint Kinematics During Backward Walking in a Virtual Environment. Nonlinear Dyn. Psychol Life Sci.
**2010**, 14, 165–178. [Google Scholar] - Alves, S.A.; Ehrig, R.M.; Raffalt, P.C.; Bender, A.; Duda, G.N.; Agres, A.N. Quantifying Asymmetry in Gait: The Weighted Universal Symmetry Index to Evaluate 3D Ground Reaction Forces. Front. Bioeng. Biotechnol.
**2020**, 8, 579511. [Google Scholar] [CrossRef] [PubMed] - Bayot, M. The Interaction between Cognition and Motor Control: A Theoretical Framework for Dual-Task Interference Effects on Posture, Gait Initiation, Gait and Turning. Neurophysiol. Clin.
**2018**, 48, 361–375. [Google Scholar] [CrossRef] [PubMed] - Zych, M.; Cannariato, A.; Bonato, P.; Severini, G. Forward and Backward Walking Share the Same Motor Modules and Locomotor Adaptation Strategies. Heliyon
**2021**, 7, e07864. [Google Scholar] [CrossRef] [PubMed] - Godde, B.; Voelcker-Rehage, C. More Automation and Less Cognitive Control of Imagined Walking Movements in High- versus Low-Fit Older Adults. Front. Aging Neurosci.
**2010**, 2, 139. [Google Scholar] [CrossRef][Green Version] - Walsh, G.S.; Taylor, Z. Complexity, Symmetry and Variability of Forward and Backward Walking at Different Speeds and Transfer Effects on Forward Walking: Implications for Neural Control. J. Biomech.
**2019**, 97, 109377. [Google Scholar] [CrossRef] [PubMed] - Hoogkamer, W.; Massaad, F.; Jansen, K.; Bruijn, S.M.; Duysens, J. Selective Bilateral Activation of Leg Muscles after Cutaneous Nerve Stimulation during Backward Walking. J. Neurophysiol.
**2012**, 108, 1933–1941. [Google Scholar] [CrossRef][Green Version] - Guadagnin, E.C.; Barbieri, F.A.; Simieli, L.; Carpes, F.P. Is Muscular and Functional Performance Related to Gait Symmetry in Older Adults? A Systematic Review. Arch. Gerontol. Geriatr.
**2019**, 84, 103899. [Google Scholar] [CrossRef] [PubMed] - Chisholm, A.E.; Perry, S.D.; McIlroy, W.E. Inter-Limb Centre of Pressure Symmetry during Gait among Stroke Survivors. Gait Posture
**2011**, 33, 238–243. [Google Scholar] [CrossRef] [PubMed][Green Version] - Herrero, L.; Franz, J.R.; Lewek, M.D. Gradually Learning to Increase Gait Propulsion in Young Unimpaired Adults. Hum. Mov. Sci.
**2021**, 75, 102745. [Google Scholar] [CrossRef] - Alingh, J.F.; Groen, B.E.; Kamphuis, J.F.; Geurts, A.C.H.; Weerdesteyn, V. Task-Specific Training for Improving Propulsion Symmetry and Gait Speed in People in the Chronic Phase after Stroke: A Proof-of-Concept Study. J. Neuroeng. Rehabil.
**2021**, 18, 69. [Google Scholar] [CrossRef] - Kersting, U.G.; Støttrup, N.; Larsen, F.G. The Influence of Shaft Stiffness on Joint Kinematics and Kinetics during Hiking. J. Biomech.
**2021**, 126, 110643. [Google Scholar] [CrossRef] [PubMed] - Kobayashi, H.; Kakihana, W.; Kimura, T. Combined Effects of Age and Gender on Gait Symmetry and Regularity Assessed by Autocorrelation of Trunk Acceleration. J. Neuroeng. Rehabil.
**2014**, 11, 109. [Google Scholar] [CrossRef][Green Version] - Said, A.M.; Justine, M.; Manaf, H. Plantar Pressure Distribution among Older Persons with Different Types of Foot and Its Correlation with Functional Reach Distance. Scientifica
**2016**, 2016, 8564020. [Google Scholar] - McKay, M.J.; Baldwin, J.N.; Ferreira, P.; Simic, M.; Vanicek, N.; Wojciechowski, E.; Mudge, A.; Burns, J. Spatiotemporal and Plantar Pressure Patterns of 1000 Healthy Individuals Aged 3–101 Years. Gait Posture
**2017**, 58, 78–87. [Google Scholar] [CrossRef] [PubMed] - Telfer, S.; Bigham, J.J. The Influence of Population Characteristics and Measurement System on Barefoot Plantar Pressures: A Systematic Review and Meta-Regression Analysis. Gait Posture
**2019**, 67, 269–276. [Google Scholar] [CrossRef] [PubMed] - Riskowski, J.L.; Hagedorn, T.J.; Dufour, A.B.; Hannan, M.T. Functional Foot Symmetry and Its Relation to Lower Extremity Physical Performance in Older Adults: The Framingham Foot Study. J. Biomech.
**2012**, 45, 1796–1802. [Google Scholar] [CrossRef] [PubMed][Green Version]

**Figure 2.**Example of pressure distribution with marked segments after manual corrections: (

**a**) 4-segments template, (

**b**) 10-segments template.

**Figure 3.**Delta of: mean (

**a**); and maximum (

**b**) pressure values in each area for forward and backward gait.

**Figure 4.**Modified ratio index of: mean (

**a**); and maximum (

**b**) pressure values in each area for forward and backward gait.

**Figure 5.**Symmetry index of: mean (

**a**); and maximum (

**b**) pressure values in each area for forward and backward gait.

**Figure 6.**Gait asymmetry of: mean (

**a**); and maximum (

**b**) pressure values in each area for forward and backward gait.

**Figure 7.**Symmetry Angle of mean (

**a**) and maximum (

**b**) pressure values in each area for forward and backward gait.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Daniluk, A.; Hadamus, A.; Ludwicki, M.; Zagrodny, B.
Backward vs. Forward Gait Symmetry Analysis Based on Plantar Pressure Mapping. *Symmetry* **2022**, *14*, 203.
https://doi.org/10.3390/sym14020203

**AMA Style**

Daniluk A, Hadamus A, Ludwicki M, Zagrodny B.
Backward vs. Forward Gait Symmetry Analysis Based on Plantar Pressure Mapping. *Symmetry*. 2022; 14(2):203.
https://doi.org/10.3390/sym14020203

**Chicago/Turabian Style**

Daniluk, Anna, Anna Hadamus, Michał Ludwicki, and Bartłomiej Zagrodny.
2022. "Backward vs. Forward Gait Symmetry Analysis Based on Plantar Pressure Mapping" *Symmetry* 14, no. 2: 203.
https://doi.org/10.3390/sym14020203