Solving a Boundary Value Problem via Fixed-Point Theorem on ®-Metric Space
Abstract
:1. Introduction
2. Preliminaries
- (1)
- The dual relation or transpose or inverse of ® is and is defined as .
- (2)
- The ® of the symmetric closure of is defined as the set (that is . In other words, is the smallest symmetric relation on Ψ.
- (i)
- the set of all fixed points of Λ;
- (ii)
- .
3. Main Results
- (a)
- is non-void set;
- (b)
- ® is Λ-closed;
- (c)
- Λ is ®-continuous;
- (d)
- There exists such that
- (a)
- is non-void set;
- (b)
- ® is Λ-closed;
- (c)
- Λ is ®-continuous;
- (d)
- There exits such that
4. An Application
- (i)
- is the sup-metric with for and the complete metric space is and hence is ®-complete.
- (ii)
- Let us choose ®-preserving, sequence such that , for all , thenHence, ®-continuous.
- (iii)
- Let be a lower solution of (14), thenMultiplying by , we haveAs ,
- (iv)
- For any , that is
- (v)
- For all ,
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sure operations dans tes ensembles abstraits et leur application aux equations integrals. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Alam, A.; Imad, M. Relation-theoretic contraction principle. J. Fixed Point Theory Appl. 2015, 17, 693–702. [Google Scholar] [CrossRef]
- Alam, A.; Imdad, M. Nonlinear contractions in metric spaces under locally T-transitive binary relations. Fixed Point Theory 2018, 19, 13–24. [Google Scholar] [CrossRef]
- Ahmadullah, M.; Imdad, M.; Gubran, R. Relation-theoretic metrical fixed point theorems under nonlinear contractions. Fixed Point Theory 2019, 20, 3–18. [Google Scholar] [CrossRef]
- Boyd, D.W.; Wong, J.S. On nonlinear contractions. Proc. Amer. Math. Soc. 1969, 20, 458–464. [Google Scholar] [CrossRef]
- Senapati, T.; Dey, L.K. Relation-theoretic metrical fixed point results via w-distance with applications. J. Fixed Point Theory Appl. 2017, 19, 2945–2961. [Google Scholar] [CrossRef]
- Ali, B.; Imdad, M.; Sessa, S. A Relation-Theoretic Matkowski-Type theorem in symmetric spaces. Axioms 2021, 10, 50. [Google Scholar] [CrossRef]
- Alam, A.; George, R.; Imdad, M.; Hasanuzzaman, M. Fixed point theorems for nonexpansive mappings under binary relations. Mathematics 2021, 9, 2059. [Google Scholar] [CrossRef]
- Javed, K.; Arshad, M.; Baazeem, A.S.; Nabil, M. Solving a fractional differential equation via θ-contractions in ®-complete metric spaces. AIMS Math. 2022, 7, 16869–16888. [Google Scholar] [CrossRef]
- Faruk, S.K.; Ahmad Khan, F.; Haq Khan, Q.; Alam, A. Relation-preserving generalized nonlinear contractions and related fixed point theorems. AIMS Math. 2022, 7, 6634–6649. [Google Scholar] [CrossRef]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, A.S.S.; Alsulami, H.H.; Karapinar, E. On the power of simulation an admissible functions in metric fixed point theory. J. Funct. Space 2017, 2017, 2068163. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, E.; Yazidi, H. Modified F-contractions via α-admissible mappings and application to integral equations. Filomat 2017, 31, 1141–1148. [Google Scholar] [CrossRef]
- Alsulami, H.H.; Gülyaz, S.; Karapinar, E.; Erham, I.M. Fixed point theorems for a class of α-admissible contractions and applications to boundary value problem. Abstr. Appl. Anal. 2014, 2014, 187031. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; Samet, B. Generalized α-ψ-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, 2012, 793486. [Google Scholar] [CrossRef]
- Prasad, G. Fixed points of Kannan contractive mappings in relational metric spaces. J. Anal. 2020, 29, 669–684. [Google Scholar] [CrossRef]
- Prasad, G. Fixed point theorems in relational metric spaces with an application to boundary value problems. J. Partial. Differ. Equ. 2021, 34, 83–93. [Google Scholar]
- Turinici, M. Abstract comparison principles and multi-variable Gronwall-Bellman inequalities. J. Math. Anal. Appl. 1986, 117, 100–127. [Google Scholar] [CrossRef] [Green Version]
- Nieto, J.J.; Rodriguez-Lopez, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22, 223–239. [Google Scholar] [CrossRef]
- Prasad, G.; Dimri, R.C. Fixed point results for weakly contrctive mappings in relational metric spaces with an application. J. Anal. 2018, 26, 151–162. [Google Scholar] [CrossRef]
- Chatterjea, S.K. Fixed-point theorems. Comptes Rendus Acadmie Bulg. Des Sci. 1972, 25, 727–730. [Google Scholar] [CrossRef]
- Kutbi, M.A.; Alam, A.; Imdad, M. Sharpening some core theorems of Nieto and Rodriguez-Lopez with application to boundary value problem. Fixed Point Theory Appl. 2015, 198, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Reich, S. Kannan’s fixed point theorem. Boll. Un. Mat. Ital. 1981, 4, 1–11. [Google Scholar]
- Prasad, G.; Dimri, R.C. Fixed point theorems via comparable mappings in ordered metric spaces. J. Anal. 2019, 27, 1139–1150. [Google Scholar] [CrossRef]
- Samet, B.; Turinici, M. Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications. Common. Math. Anal. 2012, 13, 82–97. [Google Scholar]
- Kolman, B.; Busby, R.C.; Ross, S. Discrete Mathematical Structures, 3rd ed.; PHI Pvt. Ltd.: New Delhi, India, 2000. [Google Scholar]
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
- Özgür, N.Y.; Taş, N. Some fixed-circle theorems on metric spaces. Bull. Malays. Math. Sci. Soc. 2019, 42, 1433–1449. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mani, G.; Janardhanan, G.; Ege, O.; Gnanaprakasam, A.J.; De la Sen, M. Solving a Boundary Value Problem via Fixed-Point Theorem on ®-Metric Space. Symmetry 2022, 14, 2518. https://doi.org/10.3390/sym14122518
Mani G, Janardhanan G, Ege O, Gnanaprakasam AJ, De la Sen M. Solving a Boundary Value Problem via Fixed-Point Theorem on ®-Metric Space. Symmetry. 2022; 14(12):2518. https://doi.org/10.3390/sym14122518
Chicago/Turabian StyleMani, Gunaseelan, Gopinath Janardhanan, Ozgur Ege, Arul Joseph Gnanaprakasam, and Manuel De la Sen. 2022. "Solving a Boundary Value Problem via Fixed-Point Theorem on ®-Metric Space" Symmetry 14, no. 12: 2518. https://doi.org/10.3390/sym14122518
APA StyleMani, G., Janardhanan, G., Ege, O., Gnanaprakasam, A. J., & De la Sen, M. (2022). Solving a Boundary Value Problem via Fixed-Point Theorem on ®-Metric Space. Symmetry, 14(12), 2518. https://doi.org/10.3390/sym14122518