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Abstract: In recent years, q-rung orthopair fuzzy sets (q-ROFSs), a novel and rigorous generalization
of the fuzzy set (FS) coined by Yager in 2017, have been used to manage inexplicit and indefinite
information in daily life with a high precision and greater accuracy than intuitionistic fuzzy sets (IFSs)
and Pythagorean fuzzy sets (PFSs). The characterization of a measure of similarity between q-ROFSs
is important, as they have applications in different areas, including pattern recognition, clustering,
image segmentation and decision making. Therefore, this article is dedicated to the construction of
a measure of similarity between q-ROFSs based on the Hausdorff metric. This is a very useful tool
for establishing the similarity between two objects. Furthermore, some axiomatic definitions of the
distances and similarity measures of q-ROFSs are also presented. In this article, we first present a novel
method to calculate the distance between q-ROFSs based on the Hausdorff metric. We then utilize
our proposed distance measure to construct the degree of similarity between q-ROFSs. We provide
some properties for the proposed similarity measures. We offer several numerical examples related
to pattern recognition and characterization linguistic variables to demonstrate the usefulness of the
proposed similarity measures. We construct an algorithm for orthopair fuzzy TODIM (interactive
and multi-criteria decision making, in Portuguese) based on our proposed methods. Finally, we use
the constructed orthopair fuzzy TODIM method to address problems related to daily life settings
involving multi-criteria decision making (MCDM). The numerical results show that the proposed
similarity measures are suitable, applicable and well-suited to the contexts of pattern recognition,
queries with fuzzy linguistic variables and MCDM.

Keywords: fuzzy sets; intuitionistic fuzzy sets; Pythagorean fuzzy sets; q-rung orthopair fuzzy sets;
similarity measure; linguistic variable; multicriteria decision making; orthopair fuzzy TODIM

1. Introduction

Fuzzy sets (FSs), pioneered by Zadeh [1], are an extension of the conventional or
hard sets that are binary in their construction, with an element either belonging or not
belonging to the set. FSs are a collection of objects related to the expression of uncertainty
of the characterization of objects with membership grades or a degree of belonging in
the unit interval [0, 1], in which FSs have been applied in different areas [2–4]. On the
other hand, fuzzy sets are characterized by their grade of memberships. In many daily life
settings, we may compare two objects based on their fuzzy similarity. This describes the
similarity between two sets. Consequently, the question of formalizing the process of such
a comparison has great significance. In general, similarity measures of fuzzy sets are based
on their distances. There are several models used to measure fuzzy similarities between
two objects. Zwick et al. [5] conducted a comparative analysis of the measures of similarity
between fuzzy concepts. Pappis and Karacapilidis [6] provided further similarity measures
based on the union and intersection operations, maximum difference, difference and sum
of membership grades. Wang [7] considered measures of similarity between fuzzy sets and
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between elements. Candan et al. [8] performed an application in a multimedia database
query and applied the concept of similarity to conduct query processing with different
fuzzy semantics.

The characterization of fuzzy sets (FSs) is based on a membership function with a
value in the unit interval [0, 1]. The non-membership degree of a fuzzy set is considered
as one minus the membership value. Nevertheless, if our intuition expresses the degree
of membership of a given element in a fuzzy set, then very often it does not express a
corresponding degree of non-membership as one minus the membership value. This
embellishes a well-known psychological fact that linguistic negation does not always
comply with logical negation (see Grzegorzewski [9]). This notion led to a fascinating story,
whose point of departure was such a concept of intuitionistic FSs (IFSs), developed by
Atanassov [10], which were found to be very useful for modeling uncertain and vague
concepts with a better performance than FSs. The knowledge and semantic representation
of this new invention is more meaningful, useful and applicable [11]. In this particular area,
IFSs were investigated and applied to various areas by researchers [12–15]. Often, people
feel hesitant and dubious in many real-life situations, which makes it difficult to reach final
results. To handle such situations, Torra [16] proposed hesitant fuzzy sets (HFSs) which
allow for possible values in the unit interval [0, 1] for each alternative in order to tackle
these hesitant issues more accurately and precisely. Rodríguez et al. [17] further considered
the state of the art and future directions for HFSs. Some research regarding the distance,
similarity and entropy of HFSs has been published in the literature, such as the studies of
Xu and Xia [18], Hussain and Yang [19,20] and Zhang et al. [21].

In 2013, Yager and Abbasov [22] and Yager [23] further developed the concept of
Pythagorean fuzzy sets (PFSs), which are more flexible and applicable than IFSs. Pythagorean
fuzzy sets are characterized by a membership degree and a non-membership degree, with
the condition that the sum of their squares is equal to one. For instance, IFS is denoted as
an ordered pair (µ, ν) satisfying the condition of 0 ≤ µ + ν ≤ 1. However, PFS changes
the condition 0 ≤ µ + ν ≤ 1 to 0 ≤ µ2 + ν2 ≤ 1, and thus the PFS membership values
are the ordered pair (µ, ν) that fulfill the required condition with different aggregation
operators and applications in pattern recognition, image processing and multi-criteria
decision making (MCDM). For example, if µ = 0.81 and ν = 0.5, then IFSs cannot be used
in this case, because µ+ ν > 1, but we can use PFSs, because µ2 + ν2 ≤ 1. The space of PFSs
is wider than the space of IFSs. Therefore, they can model uncertain and vague information
related to daily life situations more effectively. Many researchers have contributed to this
field, such as Zhang [24], who provided a novel approach based on the similarity measure
of Pythagorean fuzzy MCDM. Biswas and Sarkar [25] examined Pythagorean fuzzy MCDM
through similarity measures based on point operators, and Hussain et al. [26] considered
Aczel-Alsina operators for PFSs with applications in multi-attribute decision making.

Furthermore, Yager [27] generalized PFSs to q-rung orthopair fuzzy sets (q-ROFSs),
which are more flexible and efficient in handling the uncertainty, vagueness and fuzziness
with a high precision and accuracy. The q-ROFSs have pair (µ, ν) of membership and
non-membership grades satisfying the condition 0 ≤ µq + νq ≤ 1. Thus, FSs, IFSs and
PFSs are the subclasses of q-ROPFSs. Further developments in this area were provided by
many researchers. Yager et al. [28] considered further aspects of the q-ROFSs. Peng and
Liu [29] proposed information measures for q-ROFSs. Yang et al. [30] created three-way
decisions based on q-ROFSs. Joshi et al. [31] considered interval-valued q-ROFSs, along
with their properties, and Joshi and Gegov [32] provided confidence levels for q-rung
orthopair fuzzy aggregation operators and their applications to MCDM problems. It is
known that distance and similarity measures are often used to determine the degrees of
difference and similarity between two objects, respectively, and they have been widely
used in many fields, such as pattern recognition, decision making, clustering, etc. We know
that q-ROFSs are characterized by their membership degree µ and non-membership degree
ν, such that the sum of the qth power of then membership degree and the qth power of
the non-membership degree are less than or equal to 1, i.e., µq + νq ≤ 1. In this sense,
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the distance and similarity measures of q-ROFSs are more capable than those of IFSs and
PFSs in handling vague, incomplete and uncertain information. This is because q-ORFSs
are more flexible than IFSs and PFSs with q powers. Due to the wider range space of
q-ROFSs, the distance and similarity between q-ROFSs can be very useful and helpful in a
variety of fields involving uncertain situations related to day-to-day life. Different types of
distance and similarity measures for q-ROFSs have been widely used in various fields. For
example, Pinar and Boran [33] provided distance measures for q-ROFSs and then applied
them for the purpose of a supplier selection. Wang et al. [34] and Liu et al. [35] proposed
distance and similarity measures of q-ROFSs based on cosine functions, along with their
applications. Farhadinia et al. [36] provided a group of similarity measures for q-ROFSs
and their applications to MCDM. However, we have not observed the use of the Hausdorff
metric to the define distance and similarity measures for q-ROFSs thus far in the literature.
In light of these aspects, we were motivated to propose these novel distance and similarity
measures for q-ROFSs based on the Hausdorff metric.

In this paper, we first construct some measures of similarity between q-ROFSs based
on the Hausdorff metric. We then present a novel method that can be used to calculate
the distance between q-ROFSs based on the Hausdorff metric. We also present some
axiomatic definitions of the distances and similarity measures of q-ROFSs. Based on the
proposed distance and similarities, we construct an orthopair fuzzy TODIM. We apply
the constructed orthopair fuzzy TODIM to pattern recognition, linguistic variables and
multicriteria decision making. The rest of the paper is organized as follows. In Section 2,
we briefly examine some basic definitions of the IFSs, PFSs and q-ROFSs, respectively,
and then provide a brief description of the concept of the Hausdorff metric. In Section 3,
we propose a novel method for calculating the distance between q-ROFSs based on the
Hausdorff metric. Then, we describe several new similarity measures for q-ROFSs based
on the Hausdorff metric. Section 4 is dedicated to the presentation of certain applications
of the proposed similarity measures of q-ROFSs in pattern recognition, queries with fuzzy
linguistic variables and MCDM for the purpose of validation. In Section 5, we construct
an algorithm for TODIM based on our proposed similarity measures generated by the
weighted Hausdorff metric. This leads us to select the best alternative among the many
alternatives so as to solve problems related to daily life situations. In Section 6, we offer
our conclusions.

2. Preliminaries

In this section, we briefly review the definitions of IFSs, PFSs, q-ROFSs and the
Hausdorff metric.

2.1. Q-Rung Orthopair Fuzzy Sets

First, we concisely review the definitions of intuitionistic fuzzy sets (IFSs), Pythagorean
fuzzy sets (PFSs) and q-rung orthopair fuzzy sets (q-ROFSs) to show the transition from
IFSs to PFSs and then from PFSs to q-ROFSs.

Definition 1 ([10]). An IFS Ã in X is defined and represented by Ã =
{〈

x, µÃ(x), νÃ(x)
〉

: x ∈ X
}

with 0 ≤ µÃ(x)+ νÃ(x) ≤ 1 , where the functions µÃ(x) : X → [0, 1] and νÃ(x) : X → [0, 1]
represent the degree of membership and non-membership of x in X as belonging to the IFS Ã ,
respectively. In general, πÃ(x) : X → [0, 1] is used to indicate the intuitionistic fuzzy index of x
with πÃ(x) = 1−

(
µÃ(x) + νÃ(x)

)
.

To address fuzzy and ambiguous situations more widely, PFSs, a generalized form of
IFSs, are defined as follows.

Definition 2 ([22]). A PFS P̃ in X is defined by P̃ =
{〈

x, µP̃(x), νP̃(x)
〉

: x ∈ X
}

with
0 ≤ µ2

P̃
(x) + ν2

P̃
(x) ≤ 1, where the functions µ

P̃
(x) : X → [0, 1] and ν

P̃
(x) : X → [0, 1]

denote the degree of membership and non-membership of x in X as belonging to the PFS P̃ , re-
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spectively. For each x ∈ X , πP̃(x) =
√

1−
{

µ2
P̃
(x) + ν2

P̃
(x)
}

is called the Pythagorean fuzzy

index of the element x , representing the degree of hesitancy.

To generalize PFSs, Yager [27] proposed a definition of q-ROFSs, as follows:

Definition 3 ([27]). A q-ROFS M̃ in X is defined by M̃ =
{〈

x, µM̃(x), νM̃(x)
〉

: x ∈ X
}

with 0 ≤ µ
q
M̃
(x) + ν

q
M̃
(x) ≤ 1,1 ≤ q < ∞, where the functions µÃ(x) : X → [0, 1] and

πÃ(x) : X → [0, 1] denote the degree of membership and non-membership of x in X as belonging

to the q-ROFS M̃ , respectively. For each x ∈ X , πP̃(x) = q

√
1−

(
µ

q
P̃
(x) + ν

q
P̃
(x)
)

is used and

called the orthopairian fuzzy index of x , representing the degree of hesitancy.

It is obvious from the characterization of q-ROFSs that they are more flexible and
efficient than IFSs and PFSs in handling the fuzziness and uncertainty of daily life issues.
We should mention that IFSs and PFSs are not capable of handling some fuzziness, but
q-ROFSs can handle these situations effectively. Therefore, to solve daily life problems
with a greater accuracy and high precision, q-ROFSs are much better than IFSs and PFSs,
because q-ROFSs are more generalized than IFSs and PFSs.

Definition 4. Let M̃ =
{〈

x, µM̃(x), νM̃(x)
〉

: x ∈ X
}

be a q-ROFS in X . For any positive real
number n , the q-ROFS M̃n is defined as:

M̃n =

{〈
x,
(

µ
q
M̃
(x)
)n

, q

√
1−

(
1− ν

q
M̃
(x)
)n
〉

: x ∈ X

}
, n > 0 and 2 < q < ∞. (1)

It is obviously that, for a real positive number n, 0 ≤
[
µ

q
M̃
(x)
]n

+

[
q

√
1−

(
1− ν

q
M̃
(x)
)n
]

≤ 1. From Equation (1), the concentration and dilation of a q-ROFS M̃ can be defined,
respectively, as follows:

CON
(

M̃
)
=
{〈

x, µCON(M̃)(x), νCON(M̃)(x)
〉

: x ∈ X
}

(2)

where µCON(M̃)(x) =
[
µ

q
M̃
(x)
]2

,νCON(M̃)(x) = q

√
1−

[
1− ν

q
M̃
(x)
]2

; and

DIL
(

M̃
)
=
{〈

x, µDIL(M̃)(x), νDIL(M̃)(x)
〉

: x ∈ X
}

(3)

where µDIL(M̃)(x) =
[
µ

q
M̃
(x)
] 1

2 , νDIL(M̃)(x) =
q

√
1−

[
1− ν

q
M̃
(x)
] 1

2 .

Definition 5 (Peng and Liu [29]). If M̃ and Ñ are two q-ROFSs of X , then

(i) M̃c =
{ 〈

x, νM̃(x) , µM̃(x)
〉

: x ∈ X
}

;
(ii) M̃ ⊆ Ñ if and only if ∀ x ∈ X, µM̃(x) ≤ µÑ(x) and νM̃(x) ≥ νÑ(x) ;
(iii) M̃ = Ñ if and only if ∀ x ∈ X, µM̃(x) = µÑ(x) and νM̃(x) = νÑ(x) ;
(iv) M̃ ∪ Ñ =

{
max

(
µM̃(x) , µÑ(x)

)
, min

(
νM̃(x) , νÑ(x)

)}
, ∀ x ∈ X;

(v) M̃ ∩ Ñ =
{

min
(
µM̃(x) , µÑ(x)

)
, max

(
νM̃(x) , νÑ(x)

)}
, ∀ x ∈ X.

2.2. Hausdorff Metric

The Hausdorff metric is a well-known measure of the distance between two nonempty
closed and bounded (compact) subsets S and T in a Banach space K. It is defined as the
maximum value of the two direct forward and backward distances of Hausdorff [37–39].
Let d(x , y) be a metric between a point x in the set S and a point y in the set T. The forward
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distance is defined as h(S, T) = max
x∈S

{
min
y∈T

(‖x − y‖)
}

, and the backward distance is

defined as h(T, S) = max
y∈T

{
min
x∈S

(‖x − y‖)
}

, respectively. Hausdorff metric is then defined

as follows:
H(S, T) = max{h(S, T), h(T, S)}. (4)

We should mention that the Hausdorff metric is asymmetric. That is, in general,
h(S, T) 6= h(T, S). For example, if K = <, S = [α1, α2] and T = [β1, β2] are the two
intervals, and then according to Equation (4) we have:

H(S, T) = max{|α1 − β1|, |α2 − β2|}. (5)

Equation (5) is a popular measure of the distance between two intervals. We know
that a similarity measure can be defined by the distance measure. In general, distance
and similarity measures play an important role in verifying the resemblance between
two sets or objects. They have earned considerable popularity due to their wide-ranging
applications in many areas. Although there are distance and similarity measures of PFSs
and HFSs based on the Hausdorff metric in the literature [20,40], there are no distance
and similarity measures for q-ROFSs based on the Hausdorff metric. Therefore, based on
the above-defined Hausdorff metric, we propose some new measures of the distance and
similarity between q-ROFSs in the next section.

3. Measures of the Distance and Similarity between q-ROFSs Based on the
Hausdorff Metric

In this section, we define a distance between q-ROFSs according to the Hausdorff
metric and then provide measures of similarity between q-ROFSs.

3.1. A Distance for q-ROFSs Based on the Hausdorff Metric

We define a generalized interval type of q-ROFSs, which we then utilize to define a new
distance between q-ROFSs according to the Hausdorff metric. It is natural that this metric
can be applied to intervals that can be directly utilized for q-ROFSs. Suppose that M̃ and
Ñ are any two q-ROFSs in X = {x1, x2, . . . , xn} with M̃ =

{〈
x, µM̃(x), νM̃(x)

〉
: x ∈ X

}
and Ñ =

{〈
x, µÑ(x), νÑ(x)

〉
: x ∈ X

}
. Let ĨM̃(xi) and ĨÑ(xi) be subintervals on [0, 1],

denoted by ĨM̃(xi) =
[
µ

q
M̃
(xi), 1− ν

q
M̃
(xi)

]
and ĨÑ(xi) =

[
µ

q
Ñ
(xi), 1− ν

q
Ñ
(xi)

]
, where

q ≥ 1, i = 1, 2, . . . , n. We define the distance between M̃ and Ñ by using the distance
between ĨM̃(xi) and ĨÑ(xi) based on the Hausdorff metric with H̃

(
ĨM̃(xi), IÑ(xi)

)
=

max
{∣∣∣µq

M̃
(xi)− µ

q
Ñ
(xi)

∣∣∣, ∣∣∣1− ν
q
M̃
(xi)−

(
1− ν

q
Ñ
(xi)

)∣∣∣}. Thus, we give a novel Hausdorff

metric d̃H̃

(
M̃, Ñ

)
between the q-ROFSs M̃ and Ñ as follows:

d̃H̃

(
M̃, Ñ

)
=

1
n

n

∑
i=1

max
{∣∣∣µq

M̃
(xi)− µ

q
Ñ
(xi)

∣∣∣, ∣∣∣1− ν
q
M̃
(xi)−

(
1− ν

q
Ñ
(xi)

)∣∣∣} (6)

Next, we provide the main theorem with some properties for the proposed Hausdorff
metric d̃H̃

(
M̃, Ñ

)
.

Theorem 1. Suppose that the set X = {x1, . . . , xn} is a finite universe of discourses. The metric
d̃H̃

(
M̃, Ñ

)
between the two q-ROFSs M̃ and Ñ has the following results of (P1)− (P5) :

(P1) (Nonnegativity) 0 ≤ d̃H̃

(
M̃, Ñ

)
≤ 1;

(P2) (Separability) d̃H̃

(
M̃, Ñ

)
= 0 i f and only i f M̃ = Ñ;
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(P3) (Symmetric) d̃H̃

(
M̃, Ñ

)
= d̃H̃

(
Ñ, M̃

)
;

(P4) (Containment) I f M̃ ⊆ N ⊆ Õ then d̃H̃

(
M̃, Ñ

)
≤ d̃H̃

(
M̃, Õ

)
and

d̃H̃

(
Ñ, Õ

)
≤ d̃H̃

(
M̃, Õ

)
;

(P5) (Triangle Inequality) For any M̃, Ñ and Õ, then d̃H̃

(
M̃, Õ

)
≤ d̃H̃

(
M̃, Ñ

)
+ d̃H̃

(
Ñ, Õ

)
.

Proof. We provide the proof of the properties (P1)− (P5) of Theorem 1 as follows:

(P1): Since M̃ and Ñ are two q-ROFSs on X = {x1, . . . , xn}, d̃H̃

(
M̃, Ñ

)
, given by Equation

(6), is obviously positive, i.e., d̃H̃

(
M̃, Ñ

)
≥ 0. On the other hand, d̃H̃

(
M̃, Ñ

)
is defined by

its normalization with d̃H̃

(
M̃, Ñ

)
≤ 1. Thus, the result (P1) is proved.

(P2): If M̃ = Ñ, then for every xi ∈ X, we have µ
q
M̃
(xi) = µ

q
Ñ
(xi) and ν

q
M̃
(xi) = ν

q
Ñ
(xi),

and so d̃H̃

(
M̃, Ñ

)
= 0. Conversely, if d̃H̃

(
M̃, Ñ

)
= 0, then for every xi ∈ X, we

have max
{∣∣∣µq

M̃
(xi)− µ

q
Ñ
(xi)

∣∣∣, ∣∣∣νq
M̃
(xi)− ν

q
Ñ
(xi)

∣∣∣} = 0, and so
∣∣∣µq

M̃
(xi)− µ

q
Ñ
(xi)

∣∣∣ = 0 and∣∣∣νq
M̃
(xi)− ν

q
Ñ
(xi)

∣∣∣ = 0. Thus, we obtain M̃ = Ñ, and the result (P2) is proved.

(P3): It is obvious that d̃H̃

(
M̃, Ñ

)
= d̃H̃

(
Ñ, M̃

)
holds because, for each xi ∈ X,∣∣∣µq

M̃
(xi)− µ

q
Ñ
(xi)

∣∣∣ = ∣∣∣µq
Ñ
(xi)− µ

q
M̃
(xi)

∣∣∣ and
∣∣∣νq

M̃
(xi)− ν

q
Ñ
(xi)

∣∣∣ = ∣∣∣νq
Ñ
(xi)− ν

q
M̃
(xi)

∣∣∣ are
held. Thus, the result (P3) is proved.
(P4): If M̃ ⊆ N ⊆ Õ , then we have µ

q
M̃
(xi) ≤ µ

q
Ñ
(xi) ≤ µ

q
Õ
(xi) and

ν
q
M̃
(xi) ≥ ν

q
Ñ
(xi) ≥ ν

q
Õ
(xi), for each xi ∈ X. Thus, we can obtain H̃

(
ĨM̃(xi), ĨÑ(xi)

)
= max

{∣∣∣µq
M̃
(xi)− µ

q
Ñ
(xi)

∣∣∣, ∣∣∣νq
M̃
(xi)− ν

q
Ñ
(xi)

∣∣∣}, H̃
(

ĨM̃(xi), ĨÕ(xi)
)

=

max
{∣∣∣µq

M̃
(xi)− µ

q
Õ
(xi)

∣∣∣, ∣∣∣νq
M̃
(xi)− ν

q
Õ
(xi)

∣∣∣}, and H̃
(

ĨÑ(xi), ĨÕ(xi)
)

=

max
{∣∣∣µq

Ñ
(xi)− µ

q
Õ
(xi)

∣∣∣, ∣∣∣νq
Ñ
(xi)− ν

q
Õ
(xi)

∣∣∣}. We consider the following two cases:

(i) If
∣∣∣µq

M̃
(xi)− µ

q
Õ
(xi)

∣∣∣ ≥ ∣∣∣νq
M̃
(xi)− ν

q
Õ
(xi)

∣∣∣, then H̃
(

ĨM̃(xi), ĨÕ(xi)
)
=
∣∣∣µq

M̃
(xi)− µ

q
Õ
(xi)

∣∣∣.
However, we have

∣∣∣νq
M̃
(xi)− ν

q
Ñ
(xi)

∣∣∣ ≤ ∣∣∣νq
M̃
(xi)− ν

q
Õ
(xi)

∣∣∣ ≤ ∣∣∣µq
M̃
(xi)− µ

q
Õ
(xi)

∣∣∣ and∣∣∣νq
Ñ
(xi)− ν

q
Õ
(xi)

∣∣∣ ≤ ∣∣∣νq
M̃
(xi)− ν

q
Õ
(xi)

∣∣∣ ≤ ∣∣∣µq
M̃
(xi)− µ

q
Õ
(xi)

∣∣∣. On the other hand, we have∣∣∣µq
M̃
(xi)− µ

q
Ñ
(xi)

∣∣∣ ≤ ∣∣∣µq
M̃
(xi)− µ

q
Õ
(xi)

∣∣∣ and
∣∣∣µq

Ñ
(xi)− µ

q
Õ
(xi)

∣∣∣ ≤ ∣∣∣µq
M̃
(xi)− µ

q
Õ
(xi)

∣∣∣. By

combining the above inequalities, we can obtain H̃
(

ĨM̃(xi), ĨÑ(xi)
)
≤ H̃

(
ĨM̃(xi), ĨÕ(xi)

)
and H̃

(
ĨÑ(xi), ĨÕ(xi)

)
≤ H̃

(
ĨM̃(xi), ĨÕ(xi)

)
. Hence, we have d̃H̃

(
M̃, Ñ

)
≤ d̃H̃

(
M̃, Õ

)
and d̃H̃

(
Ñ, Õ

)
≤ d̃H̃

(
M̃, Õ

)
. We next consider the second case.

(ii) If
∣∣∣µq

M̃
(xi)− µ

q
Õ
(xi)

∣∣∣ ≤ ∣∣∣νq
M̃
(xi)− ν

q
Õ
(xi)

∣∣∣, then H̃
(

ĨM̃(xi), ĨÕ(xi)
)
=
∣∣∣νq

M̃
(xi)− ν

q
Õ
(xi)

∣∣∣.
However, we have

∣∣∣µq
M̃
(xi)− µ

q
Ñ
(xi)

∣∣∣ ≤ ∣∣∣µq
M̃
(xi)− µ

q
Õ
(xi)

∣∣∣ ≤ ∣∣∣νq
M̃
(xi)− ν

q
Õ
(xi)

∣∣∣ and∣∣∣µq
Ñ
(xi)− µ

q
Õ
(xi)

∣∣∣ ≤ ∣∣∣µq
M̃
(xi)− µ

q
Õ
(xi)

∣∣∣ ≤ ∣∣∣νq
M̃
(xi)− ν

q
Õ
(xi)

∣∣∣. On the other hand, we have∣∣∣νq
M̃
(xi)− ν

q
Ñ
(xi)

∣∣∣ ≤ ∣∣∣νq
M̃
(xi)− ν

q
Õ
(xi)

∣∣∣ and
∣∣∣νq

Ñ
(xi)− ν

q
Õ
(xi)

∣∣∣ ≤ ∣∣∣νq
M̃
(xi)− ν

q
Õ
(xi)

∣∣∣. Based

on the previous inequalities, we have H̃
(

ĨM̃(xi), ĨÑ(xi)
)
≤ H̃

(
ĨM̃(xi), ĨÕ(xi)

)
and

H̃
(

ĨÑ(xi), ĨÕ(xi)
)
≤ H̃

(
ĨM̃(xi), ĨÕ(xi)

)
. Hence, we have d̃H̃

(
M̃, Ñ

)
≤ d̃H̃

(
M̃, Õ

)
and

d̃H̃

(
Ñ, Õ

)
≤ d̃H̃

(
M̃, Õ

)
. Therefore, the cases (i) and (ii) complete the verification of the

result (P4).
(P5): For any three q-ROFSs M̃, Ñ, Õ on X with membership functions µ

q
M̃
(xi), µ

q
Ñ
(xi), µ

q
Õ
(xi)

and non-memberships functions ν
q
M̃
(xi), ν

q
Ñ
(xi), ν

q
Õ
(xi), respectively, we also consider the

following two cases:
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(i) If
∣∣∣µq

M̃
(xi)− µ

q
Õ
(xi)

∣∣∣ ≥ ∣∣∣νq
M̃
(xi)− ν

q
Õ
(xi)

∣∣∣, then we have H̃
(

ĨM̃(xi), ĨÕ(xi)
)

=∣∣∣µq
M̃
(xi)− µ

q
Õ
(xi)

∣∣∣, H̃
(

ĨM̃(xi), ĨÕ(xi)
)

=
∣∣∣µq

M̃
(xi)− µ

q
Ñ
(xi) + µ

q
Ñ
(xi)− µ

q
Õ
(xi)

∣∣∣,
and H̃

(
ĨM̃(xi), ĨÕ(xi)

)
≤

∣∣∣µq
M̃
(xi)− µ

q
Ñ
(xi)

∣∣∣ +
∣∣∣µq

Ñ
(xi)− µ

q
Õ
(xi)

∣∣∣ =

max
{∣∣∣µq

M̃
(xi)− µ

q
Ñ
(xi)

∣∣∣, ∣∣∣νq
M̃
(xi)− ν

q
Ñ
(xi)

∣∣∣}+max
{∣∣∣µq

Ñ
(xi)− µ

q
Õ
(xi)

∣∣∣, ∣∣∣νq
Ñ
(xi)− ν

q
Õ
(xi)

∣∣∣}
= H̃

(
ĨM̃(xi), ĨÑ(xi)

)
+ H̃

(
ĨÑ(xi), ĨÕ(xi)

)
= d̃H̃

(
M̃, Ñ

)
≤ d̃H̃

(
Ñ, Õ

)
. Similarly, we have

the following second case:

(ii) If
∣∣∣µq

M̃
(xi)− µ

q
Õ
(xi)

∣∣∣ ≤ ∣∣∣νq
M̃
(xi)− ν

q
Õ
(xi)

∣∣∣, then H̃
(

ĨM̃(xi), ĨÕ(xi)
)
=
∣∣∣νq

M̃
(xi)− ν

q
Õ
(xi)

∣∣∣,
H̃
(

ĨM̃(xi), ĨÕ(xi)
)

=
∣∣∣νq

M̃
(xi)− ν2

Ñ
(xi) + ν

q
Ñ
(xi)− ν

q
Õ
(xi)

∣∣∣, and H̃
(

ĨM̃(xi), ĨÕ(xi)
)
≤∣∣∣νq

M̃
(xi)− ν

q
Ñ
(xi)

∣∣∣ +
∣∣∣νq

Ñ
(xi)− ν

q
Õ
(xi)

∣∣∣ = max
{∣∣∣µq

M̃
(xi)− µ

q
Ñ
(xi)

∣∣∣, ∣∣∣νq
M̃
(xi)− ν

q
Ñ
(xi)

∣∣∣}+
max

{∣∣∣µq
Ñ
(xi)− µ

q
Õ
(xi)

∣∣∣, ∣∣∣νq
Ñ
(xi)− ν

q
Õ
(xi)

∣∣∣}= H̃
(

ĨM̃(xi), ĨÑ(xi)
)
+ H̃

(
ĨÑ(xi), ĨÕ(xi)

)
=

d̃H̃

(
M̃, Ñ

)
+ d̃H̃

(
Ñ, Õ

)
. Thus, we have d̃H̃

(
M̃, Õ

)
≤ d̃H̃

(
M̃, Ñ

)
+ d̃H̃

(
Ñ, Õ

)
. Based on

the two cases (i) and (ii), we prove the triangle inequality result (P5) .

Next, we utilize Equation (6) to establish the weighted Hausdorff metric and then
create different similarities measures. Let a weight vector w of each element xi ∈ X
be wi(i = 1, 2, 3, . . . , n), such that ∑n

i=1 wi = 1, where 0 ≤ wi ≤ 1. We define the
orthopairian weight Hausdorff metric as follows:

d̃wH̃

(
M̃, Ñ

)
=

n

∑
i=1

wimax
{∣∣∣µq

M̃
(xi)− µ

q
Ñ
(xi)

∣∣∣, ∣∣∣1− ν
q
M̃
(xi)−

(
1− ν

q
Ñ
(xi)

)∣∣∣} (7)

In general, Equation (7) becomes Equation (6) if we replace wi = 1/n, for i = 1, 2, . . . , n,
i.e., Equation (6) is the special case of Equation (7).

3.2. Similarity Measures for q-ROFSs Based on the Hausdorff Distance

It is well-known that the relationship between the distance and similarity can be estab-
lished through a dual concept. Thus, the distance between q-ROFSs can be used to define
the similarity between q-ROFSs according to the Hausdorff metric. Let g be a monotone
decreasing function. Because 0 ≤ d̃H̃

(
M̃, Ñ

)
≤ 1, we have g(1) ≤ g

(
d̃H̃

(
M̃, Ñ

))
≤ g(0).

This implies 0 ≤ g(d̃H̃(M̃,Ñ))−g(1)
g(0)−g(1) ≤ 1. Therefore, the measure of similarity between

q-ROFSs M̃ and Ñ can be defined as follows.

Definition 6. Let X = {x1, x2, . . . , xn} be the universe of discourse and M̃ ={(
x, µM̃(x), νM̃(x)

)∣∣x ∈ X
}

with 0 ≤ µ
q
M̃
(x) + ν

q
M̃
(x) ≤ 1, and Ñ ={(

x, µÑ(x), νÑ(x)
)∣∣x ∈ X

}
with µ

q
Ñ
(x) + ν

q
Ñ
(x) = 1, 1 ≤ q < ∞, be two q-ROFSs on

X . Let g be a monotone decreasing function. Then, a new similarity measure S̃
(

M̃ , Ñ
)

between

the two q-ROFSs M̃ and Ñ is defined as:

S̃
(

M̃ , Ñ
)
=

g
(

d̃H̃

(
M̃, Ñ

))
− g(1)

g(0)− g(1)
. (8)

According to Equation (8), different similarity measures can be provided by selecting
an appropriate function g. For example, we may choose the simplest linear function g with
g(x) = 1− x. Thus, the measure of similarity between the two q-ROFSs M̃ and Ñ using
Equation (8) can be denoted as:

S̃l

(
M̃, Ñ

)
= 1− d̃H̃

(
M̃, Ñ

)
. (9)
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On the other hand, we consider the rational function g(x) = 1/(1 + x). Then, the
defined measure of similarity between the two q-ROFSs M̃ and Ñ can be represented
as follows:

S̃r

(
M̃, Ñ

)
=

1− d̃H̃

(
M̃, Ñ

)
1 + d̃H̃

(
M̃, Ñ

) . (10)

S̃e

(
M̃, Ñ

)
=

e−d̃H̃(M̃,Ñ) − e−1

1− e−1 . (11)

Furthermore, if we consider the continuous universe of discourses with X = [a, b],
then we can obtain the following results. Let M̃ =

{(
x, µM̃(x), νM̃(x)

)∣∣x ∈ X
}

with
µ

q
Ñ
(x) + ν

q
Ñ
(x) = 1, and Ñ =

{(
x, µÑ(x), νÑ(x)

)∣∣x ∈ X
}

with µ
q
Ñ
(x) + ν

q
Ñ
(x) = 1,

1 ≤ q < ∞, be any two q-ROFSs on X. Then, we define a new distance measure d̃R̃H̃c̃
between the two q-ROFSs M̃ and Ñ as follows:

d̃qR̃H̃C̃

(
M̃, Ñ

)
=

1
b− a

b∫
a

H̃
(

ĨM̃(xi) , ĨÑ(xi)
)

dx, (12)

In pattern recognition, the elements in the set of the universe can differ in their
importance. Therefore, it is necessary for us to consider the weight vector w of each element
x ∈ X. For example, we may assume that the weight of each x ∈ X in X = [a, b] of

the continuous case is w(x), where 0 ≤ w(x) ≤ 1 and
b∫
a

w(x) = 1. Then, the weighted

Hausdorff metric between the q-ROFSs M̃ and Ñ can be defined as:

d̃R̃H̃wC̃

(
M̃, Ñ

)
=

b∫
a

w(x)H̃
(

ĨM̃(xi) , ĨÑ(xi)
)

dx, (13)

We should mention that Equation (13) becomes Equation (12) if we substitute
w(x) = 1/(b− a) for x ∈ [a, b]. Therefore, Equation (12) is a special case of Equation (13).
Obviously, we can obtain measures of similarity between M̃ and Ñ by replacing d̃wH̃

(
M̃, Ñ

)
,

d̃qR̃H̃C̃

(
M̃, Ñ

)
and d̃R̃H̃wC̃

(
M̃, Ñ

)
with d̃H̃

(
M̃, Ñ

)
in Equation (8).

4. Examples and Comparisons

In this section, we provide some examples to demonstrate the practicality and ap-
plicability of the proposed methods. We first present examples in the context of pattern
recognition. Then, we apply it to queries with fuzzy linguistic variables.

4.1. Pattern Recognition

Here, we use the proposed similarity measures of Equations (9)–(11) to display some
examples related to pattern recognition.

Example 1. In this example, we consider three patterns represented by q-ROFSs in the universe
of discourse X = {x1, x2, x3} . The three q-ROFSs are denoted as follows: M̃1 = {〈x1, 0.5, 0.5〉,
〈x2, 0.7, 0.7〉, 〈x3, 0.8, 0.8〉}, M̃2 = {〈x1, 0.8, 0.8〉, 〈x2, 0.8, 0.8〉, 〈x3, 0.8, 0.8〉} and
M̃3 = {〈x1, 0.7, 0.7〉, 〈x2, 0.7, 0.7〉, 〈x3, 0.7, 0.7〉}. Let a given sample be Ñ = {〈x1, 0.5, 0.5〉,
〈x2, 0.7, 0.7〉, 〈x3, 0.8, 0.8〉} . By utilizing Equations (9)–(11), we obtain S̃l

(
M̃1, Ñ

)
= 1,

S̃l

(
M̃2, Ñ

)
= 0.8278, S̃l

(
M̃3, Ñ

)
= 0.8843, S̃r

(
M̃1, Ñ

)
= 1, S̃r

(
M̃2, Ñ

)
= 0.7062,

S̃r

(
M̃3, Ñ

)
= 0.7926, S̃e

(
M̃1, Ñ

)
= 1, S̃e

(
M̃2, Ñ

)
= 0.7497, and S̃e

(
M̃3, Ñ

)
= 0.8272.

Thus, we have M̃1 = Ñ. Intuitively, we can see that the sample Ñ is close to the pattern M̃3 as
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compared to the pattern M̃2. Thus, the proposed similarity measures exhibit the correct classification
according to the principle of the maximum degree of similarity between q-ROFSs.

Example 2. Assume that three patterns are represented by q-ROFSs in the universe of discourse
X = {x1, x2, x3}. The two q-ROFSs are denoted as follows: M̃1 = {〈x1, 0.7, 0.7〉, 〈x2, 0.7, 0.7〉,
〈x3, 0.7, 0.7〉}; and M̃2 = {〈x1, 0.9, 0.9〉, 〈x2, 0.9, 0.9〉, 〈x3, 0.9, 0.9〉}. Let a given sample be
Ñ = {〈x1, 0.8, 0.8〉, 〈x2, 0.8, 0.8〉, 〈x3, 0.8, 0.8〉}. By utilizing Equations (9)–(11), we obtain
S̃l

(
M̃1, Ñ

)
= 0.8305, S̃l

(
M̃2, Ñ

)
= 0.7314, S̃r

(
M̃1, Ñ

)
= 0.7101, S̃r

(
M̃2, Ñ

)
= 0.5765,

S̃e

(
M̃1, Ñ

)
= 0.7533, and S̃e

(
M̃2, Ñ

)
= 0.6274. According to the above analysis, it can be seen

that Ñ is similar to M̃1 . Thus, the proposed similarity measures show the correct classification
based on the maximum degree principle of similarity between q-ROFSs.

Example 3. Suppose that three patterns are denoted by q-ROFSs in the universe of discourse
X = {x1, x2, x3}. The three q-ROFSs are denoted as follows: M̃1 = {〈x1, 0.1, 0.5〉, 〈x2, 0.7, 0.9〉,
〈x3, 0.5, 0.8〉}; M̃2 = {〈x1, 0.5, 0.9〉, 〈x2, 0.0, 0.8〉, 〈x3, 0.3, 0.5〉}; and M̃3 = {〈x1, 0.7, 0.3〉,
〈x2, 0.5, 0.9〉, 〈x3, 0.3, 0.2〉}. Let us assume a given sample Ñ = {〈x1, 0.5, 0.5〉, 〈x2, 0.7, 0.7〉,
〈x3, 0.9, 0.9〉} . By utilizing Equations (9)–(11), we obtain S̃l

(
M̃1, Ñ

)
= 0.7086, S̃l

(
M̃2, Ñ

)
=

0.6564, S̃l

(
M̃3, Ñ

)
= 0.7909, S̃r

(
M̃1, Ñ

)
= 0.5487, S̃r

(
M̃2, Ñ

)
= 0.4885, S̃r

(
M̃3, Ñ

)
=

0.6541, S̃e

(
M̃1, Ñ

)
= 0.6001, S̃e

(
M̃2, Ñ

)
= 0.5400, and S̃e

(
M̃3, Ñ

)
= 0.7015. According to

above results, it is seen that Ñ is similar to M̃3 based on the maximum degree principle of similarity
between q-ROFSs.

The abovementioned Examples 1–3 of the different types display the practicality and
reliability of our proposed similarity measures. Next, we provide an example pertaining to
characterization of the similarity between linguistic variables using our proposed similarity
measures in Equations (9)–(11).

4.2. Queries with Fuzzy Linguistic Variables

Tahani [41] first created a framework for fuzzy query processing using fuzzy sets,
and then Kacprzyk and Ziolkowski [42] provided database queries with fuzzy linguistic
quantifiers. In due course, a fuzzy database with its principles and applications was
provided in the book by Petry [43]. For query processing in multimedia databases, Candan
et al. [8] used similarity measures as an important method, with a similarity-based ranking
technique. Similar to Hussain and Yang [40], we consider measures of the similarity
between linguistic hedges. In the following Example 4, the similarities between linguistic
variables are characterized utilizing our proposed measures of similarity between q-ROFSs.

Example 4. Let M̃ =
{〈

x, µM̃(x), νM̃(x)
〉

: x ∈ X
}

be a q-rung orthopair fuzzy set on X . For a
given positive real number n , we have the q-ROFS M̃n from Definition 4, with

M̃n =

{〈
x,
(

µ
q
M̃
(x)
)n

, q

√
1−

(
1− ν

q
M̃
(x)
)n
〉

: x ∈ X

}
, 2 < q < ∞.

Moreover, the two linguistic operators, the dilation and concentration of the q-ROFS
M̃, are DIL

(
M̃
)
= M̃

1
2 and CON

(
M̃
)
= M̃2, respectively. These linguistic operations

may have different presentations, where DIL
(

M̃
)

may be considered as “more or less(
M̃
)

”, but CON
(

M̃
)

may be regarded as “very
(

M̃
)

”. Now, we take the q-ROFS M̃ in
X = {5, 10, 15, 20, 25} as:

M̃ = {〈5, 0.9, 0.5〉, 〈10, 0.8, 0.6〉, 〈15, 0.7, 0.5〉, 〈20, 0.6, 0.9〉, 〈25, 1.0, 0.0〉}
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where the q-ROFS M̃ represents “LARGE” in X. The more generalized q-ROFSs of M̃ can
be regarded as linguistic hedges, such as M̃ as “LARGE” in X. In the same manner, the
linguistic operations DIL

(
M̃
)

and CON
(

M̃
)

can be utilized as linguistic hedges, such
as “More or less LARGE”, “Very LARGE”, and “Very very LARGE”. Therefore, we can
express linguistic hedges in terms of q-ROPFSs, as follows: M̃

1
2 is regarded as “More or less

LARGE”, M̃2 is regarded as “Very LARGE” and M̃4 is regarded as “Very very LARGE”.
For the sake of brevity, the following acronyms are used: L for LARGE, M.L.L for

More or less LARGE, V.L. for Very LARGE and V.V.L. for Very very LARGE. The pro-
posed measures of similarity between the q-ROFSs from Equations (9)–(11) are utilized to
compute the degrees of similarities between the abovementioned q-ROFSs. The compu-
tational results are displayed in Table 1. Thus, we obtain the following requirements ac-
cording to the degrees of similarity between the q-ROFSs from Table 1, with S̃(L., M.L.L.)>
S̃(L., V.L.) > S̃(L., V.V.L.), S̃(M.L.L., L.) > S̃(M.L.L., V.L.) > S̃(M.L.L., V.L.L.),
S̃(V.L., V.V.L.) > S̃(V.L., L.) > S̃(V.L., M.L.L.), and S̃(V.V.L., V.L) > S̃(V.V.L., L.) >
S̃(V.V.L., M.L.L.). According to the above order of similarities from Table 1, based on
the proposed similarity measures of Equations (9)–(11), we find that there is a good or-
dering between L., V.L., M.L.L. and V.V.L. That is, the proposed similarity measures in
Equations (9)–(11) are well-suited, valid and efficient in the context of compound linguis-
tic variables.

Table 1. Calculation of similarity measures using Equations (9)–(11).

L. M.L.L. V.L V.V.L.

L.
1.000(9)
1.000(10)
1.000(11)

0.8358(9)
0.7179(10)
0.7640(11)

0.8259(9)
0.7034(10)
0.7472(11)s

0.7456(9)
0.5944(10)
0.6446(11)

M.L.L.
0.8358(9)
0.7179(10)
0.7640(11)

1.000(9)
1.000(10)
1.000(11)

0.6618(9)
0.4945(10)
0.5461(11)

0.5815(9)
0.4099(10)
0.4591(11)

V.L
0.8259(9)
0.7034(10)
0.7472(11)s

0.6618(9)
0.4945(10)
0.5461(11)

1.000(9)
1.000(10)
1.000(11)

0.9151(9)
0.8435(10)
0.8712(11)

V.V.L.
0.7456(9)
0.5944(10)
0.6446(11)

0.5815(9)
0.4099(10)
0.4591(11)

0.9151(9)
0.8435(10)
0.8712(11)

1.000(9)
1.000(10)
1.000(11)

(i) Indicates the similarity degree obtained by Equation (i).

4.3. Comparison Analysis

Recently, Farhadinia et al. [36] proposed the following similarity measure:

SF

(
M̃, Ñ

)
=

SPL1

(
M̃, Ñ

)
+ 1− dw

(
M̃, Ñ

)
2

where SPL1

(
M̃, Ñ

)
= 1− 1

2n

n
∑

i=1

{∣∣∣µq
M̃
− µ

q
Ñ

∣∣∣+ ∣∣∣νq
M̃
− ν

q
Ñ

∣∣∣+ ∣∣∣πq
M̃
− π

q
Ñ

∣∣∣} and

dw

(
M̃, Ñ

)
= 1− 1

n

n

∑
i=1

cos
{π

2

{
max

(∣∣∣µq
M̃
− µ

q
Ñ

∣∣∣, ∣∣∣νq
M̃
− ν

q
Ñ

∣∣∣)}}
In this subsection, we conduct a numerical analysis of our proposed similarity mea-

sures, comparing them with those of Farhadinia et al. [36] to show the superiority of our
proposed methods.

Example 5. Let us consider a single universe X = {x1} of discourse. Let the three q-ROFSs in
X be M̃ = {〈x1, 0.3, 0.4〉}, Ñ = {〈x1, 0.4, 0.3〉} and Õ = {〈x1, 0.0, 0.45〉} . Intuitively, we see
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that M̃ is closer to Ñ than to Õ . Thus, we expect that the measure of the similarity between M̃ and
Ñ should be larger than the measure of similarity between M̃ and Õ . According to the similarity
measure SF of Farhadinia et al. [36], we obtain SF

(
M̃, Ñ

)
= 0.9480 < SF

(
M̃, Õ

)
= 0.9858 . On

contrary, the similarity results obtained by SF cannot correctly classify these three q-ROFSs, M̃, Ñ
and Õ . On the other hand, the results of our proposed similarity measures in Equations (9)–(11)
are obtained as follows: Sl

(
M̃, Ñ

)
= 0.963 > Sl

(
M̃, Õ

)
= 0.936; Sr

(
M̃, Ñ

)
= 0.9286 >

Sr

(
M̃, Õ

)
= 0.8797 and Se

(
M̃, Ñ

)
= 0.9425 > Se

(
M̃, Õ

)
= 0.9019. It can be seen that the

similarity measures of Equations (9)–(11) give the following result: M̃ is closer to Ñ as compared
to Õ . Thus, our proposed similarity measures correctly classify the three q-ROFSs M̃, Ñ and Õ
according to the principle of the maximum degree of similarity between q-ROFSs.

5. Application to Multi-Criteria Decision Making Related to Daily Life

In daily life, decision making is a process of hand-picking the best option or options
from an available finite number of viable options. For the purpose of better decision making,
the best alternative is always chosen among the many alternatives. Decision making is a
kind of day-to-day activity in our daily lives. It plays an important role in many fields,
including business intelligence, biological sciences, computer science, engineering, financial
management, medical sciences, and social and political sciences. Multi-criteria decision
making (MCDM) is the process of selecting an appropriate and reasonable option from a
finite number of available options under the influences of several criteria. To acquire the
most preferred option, decision makers apply their preference information to the available
options. Inexactness is a reality of daily life that requires very careful attention, because
it may have effects on management and decision making. In real-life matters, available
information is often vague, fuzzy and incomplete, and it may be difficult to form a complete
and exactly accurate decision. The q-ROFSs are found to be a very rigorous tool for solve
these kinds of decision-making problems involving such incomplete and vague information
with a high accuracy and exactness.

In this section, we apply the proposed similarity measures in Equations (9)–(11)
to manage daily life issues involving complex MCDM processes. In 1992, Gomes and
Lima [44] first provided a practical application of the TODIM method (the name TODIM
is a Portuguese acronym for interactive and multicriteria decision making), and then
Trotta et al. [45] and Gomes and Rangel [46] developed further applications of TODIM
in healthcare and the rental evaluation of residential properties. We now provide an
orthopairian fuzzy TODIM (OF-TODIM) approach that extends TODIM based on our
proposed similarity measures Equations (9)–(11) so that it can be used for TODIM in the
case of q-ROFSs. We then apply the proposed OF-TODIM to the MCDM process for daily
life problems. Let A =

{
Ã1, Ã2, . . . , Ãi

}
represent the set of alternatives under the set of

criteria C =
{

C̃1, C̃2, . . . , C̃j

}
. According to the concept of the TODIM method, the gain and

loss of each alternative Ãi, with respect to the criteria C̃j, is assessed. Then, we calculate
the dominance degree of each alternative Ãi over each alternative Ãt with respect to the
criterion C̃j. The overall value of each alternative Ãi is obtained and ranks the alternatives
Ãi in descending order. The steps used to develop an algorithm for OF-TODIM so as to
solve problems related to daily life settings involving the MCDM process utilizing our
proposed similarity measures in Equations (9)–(11) are as follows:

Step 1: Construction of the orthopairian fuzzy decision matrix
Let Ã =

{
Ã1, Ã2, . . . , Ãi

}
represent the set of alternatives and let the set of criteria

be represented by C̃ =
{

C̃1, C̃2, . . . , C̃j

}
. Assume that the orthopairian fuzzy decision

matrix (OFDM) is represented by R̃ =
(
rij
)

m×n, given by the decision makers (DMs) in the
MCDM problems. Let rij be a q-rung orthopair fuzzy number (q-ROFN) and rij =

(
µij, νij

)
,

i = {1, 2, . . . , m}, j = {1, 2, . . . , n} be a criteria value provided by the decision maker to
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each alternative. The value µij indicates the degree to which the alternative Ãi satisfies
the criteria C̃j, with νij representing the degree to which the alternative Ãi does not satisfy
the criteria C̃j, such that 0 ≤ µ

q
M̃
(x) + ν

q
M̃
(x) ≤ 1. The quantities µ

q
M̃
(x) ∈ [0, 1] and

ν
q
M̃
(x) ∈ [0, 1], respectively, are mapped. The decision matrix is constructed as follows:

C̃1 C̃2 . . . C̃j

R̃ =
(
rij
)

m×n =

Ã1
Ã2
.
.
.

Ãi



r11 r12 . . . r1j
r21 r22 . . . r2j
. . . . . .
. . . . . .
. . . . . .

ri1 ri2 . . . rij


Step 2: Construction of the normalized orthopairian fuzzy decision matrix
Transform the decision matrix R̃ =

(
rij
)

m×n into a normalized orthopair fuzzy decision
matrix (NOFDM):

L̃ =
(
lij
)

m×n =

{
rij f or bene f icial type attribute(
rij
)c f or cost type attribute

In this step, we transform the OFDM R̃ =
(
rij
)

m×n into NOFDM. If the criteria are
benefits, then we write the original matrix, but if the criterion is cost, then we take the
complement of criteria

(
rij
)c.

Step 3: Calculation of the relative weight of each criterion
We calculate the relative weight wjr of each criterion C̃j using wjr = wj/wr, where

wj is the individual weight wj(1, 2, . . . , n) of each criterion
...
C j, satisfying the condition

∑n
j=1 wj = 1. In the OF-TODIM method, we select the heaviest weight wr as a reference

weight and divide the reference weight by all the weights wj:

wr = max
(
wj : j = {1, 2, . . . , n}

)
Step 4: Dominance degree of each alternative Ãi
The dominance degree of each alternative Ãi over each alternative Ãt with respect to

the criterion C̃j is calculated as follows:

φj

(
Ãi, Ãt

)
=



√√√√wrj S̃(Iij ,Itj)
n
∑

j=1
wjr

i f Iij > Itj

0 i f Iij = Itj

− 1
θ

√√√√ n
∑

j=1
wrj S̃(Iij ,Itj)

wjr
i f Iij < Itj

where Iij and Itj are the performance of alternatives Ãi and Ãt, respectively, in relation

to j, and φj

(
Ãi, Ãt

)
represents the dominance degree of each alternative Ãi individually

over alternative Ãt with respect to the criterion
...
C j, equating alternative Ãi with alternative

Ãt. θ represents the attenuation factor of the loss. If Iij > Itj or Iij − Itj > 0, then
we conclude that it is the dominance degree of gain. S̃

(
Iij, Itj

)
represents the proposed

similarity measures given in Equations (9)–(11), and wjr is the relative weight of each
criterion C̃j. If Iij < Itj or Iij − Itj < 0, then it represents the dominance degree of the loss.
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If Iij > Itj means gain, then we use

√√√√wjr S̃(Iij ,Itj)
n
∑

i=1
wjr

. If Iij < Itj means loss, then we use

− 1
θ

√
n
∑

i=1

wjr S̃(Iij ,Itj)
wjr

, where Iij = Itj is considered as nonsensical.

Step 5: Calculate the overall dominance degree of Ãi over each alternative Ãt
In this step, we calculate the overall dominance degree of each Ãi over each alternative

Ãt using δ
(

Ãi, Ãt

)
=

n
∑

j=1
φj

(
Ãi, Ãt

)
, where δ

(
Ãi, Ã

)
denotes the measurement of the

dominance of each alternative Ãi over alternative Ãt.
Step 6: Overall value of each alternative Ãi
We calculate the overall value of each alternative Ãi using:

ψ
(

Ãi

)
=

n
∑

i=1
δ
(

Ãi, Ãt

)
−min

i

(
m
∑

i=1
δ
(

Ãi, Ãt

))
max

i

{
m
∑

i=1
δ(Ãi, Ãt)

}
−min

i

(
m
∑

i=1
δ
(

Ãi, Ãt

))
Clearly, 0 ≤ ψi ≤ 1, and we need to select the greater value of ψi, which will be

considered as the best alternative Ai.
Step 7: Ranking of the alternatives
In this step, we determine the ranking of the alternatives according to the overall

values. The alternatives are arranged in descending order. The alternative in which ψ(Ai)
takes the greatest value is considered as the best alternative.

Example 6. In the present era, the internet has become an integral part of human life. It plays
an important role in connecting people regardless of physical barriers and helps people to enhance
their lives. It also provides a facility to human beings that can be used to access useful data,
various things, information, knowledge and learning and is convenient for individuals and socio-
economic development. In the present COVID-19 pandemic, the use of the internet has become more
demanding, and online education systems are becoming increasingly popular. Despite its importance,
many areas of developing countries still lack this very important facility for one reason or another.
Therefore, the planning commission of a developing country invites national and international
internet-providing companies (IPCs) to provide fast and uninterrupted internet facilities to their
people. Assume that the commission has to select the IPC that is supposed to provide the best
internet facility according to wishes of the people. There are five available IPCs as alternatives, (A1)
IPC 1, (A2) IPC 2, (A3) IPC 3, (A4) IPC 4 and (A5) IPC 5, under the following five identified
criteria used to assess these five IPCs. The orthopairian fuzzy decision matrix of the alternative
over the criteria is displayed in the Table 2 below. The calculation of the weight criteria using

wj =
max(µ3

A ,µ3
B)+min(ν3

A ,ν3
B)

2 is shown in Table 3, and the calculation of the relative weights is given
in Table 4.

Table 2. Q-rung orthopairian fuzzy decision matrix.

~
C1

~
C2

~
C3

~
C4

~
C5

Ã1 (0.9, 0.5) (0.8, 0.6) (0.7, 0.5) (0.6, 0.6) (0.8, 0.8)
Ã2 (0.7, 0.7) (0.9, 0.3) (0.6, 0.3) (0.7, 0.9) (0.5, 0.7)
Ã3 (0.8, 0.5) (0.7, 0.5) (0.5, 0.6) (0.5, 0.7) (0.7, 0.7)
Ã4 (0.6, 0.6) (0.9, 0.5) (0.8, 0.6) (0.7, 0.5) (0.8, 0.6)
Ã5 (0.8, 0.6) (0.7, 0.7) (0.9, 0.5) (0.8, 0.5) (0.7, 0.7)
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Table 3. Weight of each criterion.

w1 w2 w3 w4 w5

max/min 0.229 0.203 0.203 0.171 0.195

Table 4. Relative weights.

w1r w2r w3r w4r w5r

wjr 1.000 0.886 0.886 0.747 0.852

The calculation of the dominance degree of Ãi over Ãt with respect to the criterion
C̃1 using Equation (9) is denoted by φ1(Ai, At). Table 5 reflects the evaluation of the
dominance degree of the alternative Ãi over each alternative Ãt with respect to criterion
C̃1. The calculation of the dominance degree of Ãi over Ãt with respect to the criterion
C̃2 using Equation (9) is denoted by φ2(Ai, At). Table 6 reflects the evaluation of the
dominance degree of the alternatives Ãi over each alternative Ãt with respect criteria
C̃2. The calculation of the dominance degree of Ãi over Ãt with respect to the criterion
C̃3 using Equation (10) is denoted by φ3(Ai, At). Table 7 reflects the evaluation of the
dominance degree of the alternatives Ãi over each alternative Ãt with respect criterion
C̃3. The calculation of the dominance degree of Ãi over Ãt with respect to the criterion
C̃4 using Equation (9) is denoted by φ4(Ai, At). Table 8 reflects the evaluation of the
dominance degree of the alternatives Ãi over each alternative Ãt with respect criterion C̃4.
The calculation of the dominance degree of Ãi over Ãt with respect to the criterion C̃5 using
Equation (9) is denoted by φ5(Ai, At). Table 9 reflects the evaluation of the dominance
degree of the alternatives Ãi over each alternative Ãt with respect criterion C̃5.

Table 5. The matrix for criterion C̃1.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.375 0.423 0.334 0.423
Ã2 −0.375 0.000 −0.423 0.000 −0.436
Ã3 −0.423 0.423 0.000 0.401 0.456
Ã4 −0.334 0.000 −0.401 0.000 −0.401
Ã5 −0.423 0.436 −0.456 0.401 0.000

Table 6. The matrix for criterion C̃2.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 −0.450 0.401 −0.450 0.401
Ã2 0.389 0.000 0.353 0.374 0.353
Ã3 −0.463 −0.398 0.000 −0.398 0.398
Ã4 0.398 −0.477 0.352 0.000 0.353
Ã5 −0.463 −0.398 −0.449 −0.398 0.000

Table 7. The matrix for criterion C̃3.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.421 0.398 −0.463 −0.398
Ã2 −0.475 0.000 0.405 −0.426 −0.355
Ã3 −0.449 −0.458 0.000 −0.398 −0.320
Ã4 0.410 0.378 0.352 0.000 −0.450
Ã5 0.353 0.314 0.283 0.398 0.000
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Table 8. The matrix for criterion C̃4.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.288 0.386 −0.517 −0.464
Ã2 −0.368 0.000 −0.434 −0.348 −0.348
Ã3 −0.517 0.324 0.000 −0.434 −0.433
Ã4 0.386 0.360 0.324 0.000 −0.433
Ã5 0.347 0.260 0.323 0.297 0.000

Table 9. The matrix for criterion C̃5.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.346 0.000 −0.435 0.000
Ã2 −0.406 0.000 −0.406 −0.406 −0.406
Ã3 0.000 0.346 0.000 −0.472 0.000
Ã4 0.370 0.346 0.402 0.000 −0.402
Ã5 0.000 0.346 0.000 −0.472 0.000

The calculation of the dominance degree of Ãi over Ãt with respect to the criterion
C̃1 using Equation (10) is denoted by φ1(Ai, At). Table 10 shows the evaluation of the
dominance degree of the alternative Ãi over each alternative Ãt with respect criterion C̃1.
The calculation of the dominance degree of Ãi over Ãt with respect to the criterion C̃2
using Equation (10) is denoted by φ2(Ai, At). Table 11 represents the evaluation of the
dominance degree of the alternative Ãi over each alternative Ãt with respect criterion
C̃2. The calculation of the dominance degree of Ãi over Ãt with respect to the criterion
C̃3 using Equation (10) is denoted by φ3(Ai, At). Table 12 reflects the evaluation of the
dominance degree of the alternatives Ãi over each alternative Ãt with respect criterion
C̃3. The calculation of the dominance degree of Ãi over Ãt with respect to the criterion
C̃4 using Equation (10) is denoted by φ4(Ai, At). Table 13 exhibits the evaluation of the
dominance degree of the alternative Ãi over each alternative Ãt with respect criterion C̃4.
The calculation of the dominance degree of Ãi over Ãt with respect to the criterion C̃5 using
Equation (10) is denoted by φ5(Ai, At). Table 14 reflects the evaluation of the dominance
degree of the alternative Ãi over each alternative Ãt with respect criterion C̃5.

Table 10. The matrix for criterion C̃1.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.318 0.383 0.271 0.383
Ã2 −0.318 0.000 −0.383 0.000 −0.403
Ã3 −0.383 0.383 0.000 0.352 0.436
Ã4 −0.271 0.000 −0.352 0.000 −0.352
Ã5 −0.383 0.403 −0.436 0.352 0.000

Table 11. The matrix for criterion C̃2.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 −0.407 0.379 −0.407 0.379
Ã2 0.361 0.000 0.299 0.400 0.299
Ã3 −0.428 −0.338 0.000 −0.338 0.361
Ã4 0.361 −0.452 0.299 0.000 0.299
Ã5 −0.428 −0.338 −0.408 −0.338 0.000
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Table 12. The matrix for criterion C̃3.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.396 0.361 −0.428 −0.338
Ã2 −0.441 0.000 0.372 −0.374 −0.288
Ã3 −0.408 −0.419 0.000 −0.338 −0.252
Ã4 0.379 0.332 0.299 0.000 −0.407
Ã5 0.299 0.255 0.224 0.361 0.000

Table 13. The matrix for criterion C̃4.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.235 0.364 −0.487 −0.408
Ã2 −0.314 0.000 −0.368 −0.275 −0.275
Ã3 −0.487 0.275 0.000 −0.368 −0.368
Ã4 0.364 0.205 0.275 0.000 −0.467
Ã5 0.305 0.205 0.275 0.348 0.000

Table 14. The matrix for criterion C̃5.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.293 0.000 −0.382 0.000
Ã2 −0.344 0.000 −0.345 −0.344 −0.345
Ã3 0.000 0.293 0.000 −0.437 0.000
Ã4 0.325 0.293 0.372 0.000 0.372
Ã5 0.000 0.293 0.000 −0.437 0.000

The calculation of the dominance degree of Ãi over Ãt with respect to the criterion
C̃1 using Equation (11) is denoted by φ1(Ai, At). Table 15 reflects the evaluation of the
dominance degree of the alternative Ãi over each alternative Ãt with respect criterion
C̃1. The calculation of the dominance degree of Ãi over Ãt with respect to the criterion
C̃2 using Equation (11) is denoted by φ2(Ai, At). Table 16 denotes the evaluation of the
dominance degree of the alternative Ãi over each alternative Ãt with respect criterion C̃2.
The calculation of the dominance degree of Ãi over Ãt with respect to the criterion C̃3
using Equation (11) is denoted by φ3(Ai, At). Table 17 represents the evaluation of the
dominance degree of the alternative Ãi over each alternative Ãt with respect criterion C̃3.
The calculation of the dominance degree of Ãi over Ãt with respect to the criterion C̃4 using
Equation (11) is denoted by φ4(Ai, At). Table 18 reflects the evaluation of the dominance
degree of the alternative Ãi over each alternative Ãt with respect criteria C̃4. The calculation
of the dominance degree of Ãi over Ãt with respect to the criterion C̃5 using Equation (11)
is denoted by φ5(Ai, At). Table 19 exhibits the evaluation of the dominance degree of the
alternative Ãi over each alternative Ãt with respect criterion C̃5.

Table 15. The matrix for criterion C̃1.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.336 0.398 0.289 0.398
Ã2 −0.336 0.000 −0.397 0.000 −0.415
Ã3 −0.398 0.397 0.000 0.369 0.444
Ã4 −0.289 0.000 −0.369 0.000 −0.369
Ã5 −0.398 0.415 −0.444 0.369 0.000
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Table 16. The matrix for criterion C̃2.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 −0.422 0.391 −0.422 0.391
Ã2 0.374 0.000 0.316 0.410 0.316
Ã3 −0.441 −0.357 0.000 −0.357 0.374
Ã4 0.374 −0.416 0.316 0.000 0.316
Ã5 −0.441 −0.357 −0.422 −0.357 0.000

Table 17. The matrix for criterion C̃3.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.405 0.375 −0.441 −0.357
Ã2 −0.458 0.000 0.384 −0.392 −0.307
Ã3 −0.422 −0.434 0.000 −0.356 −0.270
Ã4 0.391 0.347 0.316 0.000 −0.422
Ã5 0.316 0.272 0.239 0.374 0.000

Table 18. The matrix for criterion C̃4.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.247 0.372 −0.498 −0.427
Ã2 −0.331 0.000 −0.389 −0.294 −0.294
Ã3 −0.498 0.290 0.000 −0.389 −0.388
Ã4 0.372 0.219 0.290 0.000 −0.480
Ã5 0.319 0.219 0.290 0.359 0.000

Table 19. The matrix for criterion C̃5.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.309 0.000 −0.399 0.000
Ã2 −0.363 0.000 −0.364 −0.363 −0.363
Ã3 0.000 0.309 0.000 −0.450 0.000
Ã4 0.341 0.309 0.383 0.000 0.383
Ã5 0.000 0.309 0.000 −0.450 0.000

The overall dominance degrees of Ai over At using δ(Ai, At) =
n
∑

j=1
φj(Ai, At) for

Equations (9)–(11) are shown in Tables 20–22, respectively.

Table 20. Overall dominance degree.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.980 1.617 −1.531 −0.029
Ã2 −1.244 0.000 −0.505 −0.806 −1.192
Ã3 −1.852 0.273 0.000 −1.301 0.101
Ã4 1.230 0.507 1.029 0.000 −0.600
Ã5 −0.186 0.958 −0.299 0.226 0.000
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Table 21. Overall dominance degree.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.835 1.487 −1.433 0.016
Ã2 −1.056 0.000 −0.425 −0.593 −1.012
Ã3 −1.706 0.194 0.000 −1.129 0.177
Ã4 1.158 0.378 0.893 0.000 −0.555
Ã5 −0.207 0.818 −0.345 0.286 0.000

Table 22. Overall dominance degree.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.875 1.535 −1.471 0.005
Ã2 −1.114 0.000 −0.450 −0.639 −1.064
Ã3 −1.759 0.205 0.000 −1.183 0.160
Ã4 1.189 0.414 0.936 0.000 −0.572
Ã5 −0.204 0.858 −0.337 0.295 0.000

The overall values of Ai over each alternative At using

ψ
(

Ãi

)
=

m
∑

i=1
δ(Ai, At)−min

i
(

m
∑

i=1
δ(Ai, At))

max
i

{
m
∑

i=1
δ(Ai, At)

}
−min

i
(

m
∑

i=1
δ(Ai, At))

for the proposed similarity measures of Equations (9)–(11) are shown in Table 23. Finally,
we rank the alternatives using Table 23 in descending order according to the values of ψi.
The final ranking is shown in Table 24. From Table 24, we find that there is no conflict in the
ranking of the alternatives using the proposed similarity measures of Equations (9)–(11).
They all rank in the order of A4 � A1 � A5 � A3 � A2, which is unanimously confirmed
by the proposed similarity measures. Thus, our analysis shows that the best possible
alternative is A4.

Table 23. Overall values of Ai over each alternative At.

~
Sl Ψi

~
Sr Ψi

~
Se Ψi

Ã1 0.8091 Ã1 0.7100 Ã1 0.8045
Ã2 0.000 Ã2 0.000 Ã2 0.000
Ã3 0.1637 Ã3 0.1106 Ã3 0.1318
Ã4 1.0000 Ã4 1.0000 Ã4 1.0000
Ã5 0.7519 Ã5 0.6472 Ã5 0.7411

Table 24. Ranking of the alternatives.

Similarities Ranking

S̃l Ã4 > Ã1 > Ã5 > Ã3 > Ã2
S̃r Ã4 > Ã1 > Ã5 > Ã3 > Ã2
S̃e Ã4 > Ã1 > Ã5 > Ã3 > Ã2

In Example 5 in Section 4.3, we compared our proposed similarity measures with the
measure of similarity SF

(
M̃, Ñ

)
proposed by Farhadinia et al. [36]. Next, we provided a

further comparison of our proposed (orthopairian fuzzy) TODIM with the TODIM based
on the similarity SF. We used the application example, Example 6, for our comparison. It is
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obvious that Steps 1, 2 and 3 based on the similarity SF provided by Farhadinia et al. [36]
are the same as those of our proposed (Orthopairian fuzzy) TODIM. Here, we use SF in
Steps 4, 5, 6 and 7 as follows:

In Step 4, the dominance degree of Ai over At with respect to the criteria C̃1, C̃2, C̃3,
C̃4 and C̃5 using SF(Ai, At) are shown in Tables 25–29, respectively.

Table 25. The matrix for criterion C̃1.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.194 0.232 0.151 0.196
Ã2 −0.423 0.000 −0.464 0.000 −0.436
Ã3 −0.464 0.199 0.000 0.177 0.456
Ã4 −0.383 0.000 −0.446 0.000 −0.446
Ã5 −0.464 0.196 −0.456 0.177 0.000

Table 26. The matrix for criterion C̃2.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 −0.464 0.199 −0.464 0.200
Ã2 0.200 0.000 0.353 0.192 0.158
Ã3 −0.462 −0.398 0.000 −0.423 0.196
Ã4 0.212 −0.488 0.182 0.000 0.165
Ã5 −0.474 −0.398 −0.464 −0.390 0.000

Table 27. The matrix for criterion C̃3.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.165 0.199 −0.462 −0.423
Ã2 −0.384 0.000 0.197 −0.419 −0.368
Ã3 −0.464 −0.458 0.000 −0.464 −0.333
Ã4 0.211 0.181 0.199 0.000 −0.452
Ã5 0.194 0.158 0.299 0.191 0.000

Table 28. The matrix for criterion C̃4.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.165 0.205 −0.469 −0.447
Ã2 −0.384 0.000 −0.390 −0.349 −0.349
Ã3 −0.481 0.168 0.000 −0.434 −0.390
Ã4 0.215 0.151 0.187 0.000 −0.466
Ã5 0.204 0.151 0.168 0.187 0.000

Table 29. The matrix for criterion C̃5.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.169 0.000 −0.447 0.000
Ã2 −0.398 0.000 −0.413 −0.424 −0.464
Ã3 0.000 0.198 0.000 −0.474 0.000
Ã4 0.204 0.180 0.204 0.000 0.181
Ã5 0.000 0.196 0.000 −0.457 0.000

In Step 5, the overall dominance degrees of Ai over At using the similarity SF are
shown in Table 30.
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Table 30. Overall dominance degrees.

~
A1

~
A2

~
A3

~
A4

~
A5

Ã1 0.000 0.229 0.835 −1.691 −0.474
Ã2 −1.389 0.000 −0.717 −1.000 −1.459
Ã3 −1.871 −0.291 0.000 −1.625 0.071
Ã4 0.459 0.024 0.326 0.000 −1.018
Ã5 −0.544 −0.303 −0.462 −0.292 0.000

In Step 6, the overall values of Ai over At using ψ(Ai) for the similarity measure SF
are shown in Table 31.

Table 31. Overall values of Ai over each alternative At.

~
SF

~
A1

~
A2

~
A3

~
A4

~
A5

Ψi 0.7950 0.0000 0.1949 1.0000 0.6804

Finally, we rank the alternatives using Table 31 in descending order according to the
values of ψi. The final ranking is shown in Table 32. From Table 32, we find that they
ranking in the order of A4 � A1 � A5 � A3 � A2.

Table 32. Ranking of the alternatives.

Similarity Ranking

S̃l Ã4 > Ã1 > Ã5 > Ã3 > Ã2

By comparing our proposed methods in Equations (9)–(11) with the method proposed
by Farhadinia et al. [36], we can see that they all provide the same results for this application
example. That is, they demonstrate that there is no conflict in the ranking of the alternatives
and the selection of the best alternative A4, with A4 � A1 � A5 � A3 � A2. We should
mention that if we compare the formula form of our proposed Equations (9)–(11) with
that of Farhadinia et al. [36], we can see that our proposed methods are simpler and more
intuitive as compared to that of Farhadinia et al. [36]. On the other hand, the comparative
analysis of Example 5 actually indicates that our proposed methods perform better than
that of Farhadinia et al. [36].

6. Conclusions

Many extensions and generalizations of fuzzy sets have been suggested in the litera-
ture that can be used to model uncertain, vague and fuzzy information with a high accuracy
and precision. In this paper, we considered the generalization of fuzzy sets, called q-rung
orthopair fuzzy sets (q-ROFSs), to construct distance and similarity measures according
to the Hausdorff metric. We considered the Hausdorff metric to calculate the distance
between q-ROFSs. We then used the proposed distances between the q-ROFSs to develop
new similarity measures for calculating the degrees of similarity between q-ROFSs. Our
consideration of the measures of the distance and similarity between q-ROFSs was based
on finite universes of discourses, which are used not only in computing environments but
also in more general cases for large universal sets. The proposed methods are natural and
easy to apply in a variety of applications and well-suited to the q-ROFSs environment. We
presented several examples to show the reasonability and applicability of our proposed
methods. We applied the proposed measures to pattern recognition and queries with
fuzzy linguistic variables. Based on the proposed methods, we also constructed a new
orthopairian fuzzy TODIM method to address problems related to daily life settings involv-
ing multi-criteria decision making (MCDM). The results show that the proposed methods
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are reasonable, applicable and well-suited to pattern recognition, linguistic variables and
MCDM problems.
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