Symmetry, Special Functions and Number Theory
Editorial of Papers Published in 2020–2022 in the Journal Symmetry
Funding
Conflicts of Interest
References
- Vyas, Y.; Srivastava, H.M.; Pathak, S.; Fatawat, K. General Summation Formulas Contiguous to the q-Kummer Summation Theorems and Their Applications. Symmetry 2021, 13, 1102. [Google Scholar] [CrossRef]
- Kitaev, A.V. Grothendieck’s dessins d’enfants, their deformations, and algebraic solutions of the sixth Painlevé and Gauss hypergeometric equations. St. Petersburg Math. J. 2006, 17, 169–206. [Google Scholar] [CrossRef]
- Boalch, P. Towards a nonlinear Schwarz’s list. arxiv 2008, arXiv:0707.3375. [Google Scholar]
- Muhiuddin, G.; Khan, W.A.; Duran, U.; Al-Kadi, D. A New Class of Higher-Order Hypergeometric Bernoulli Polynomials Associated with Lagrange–Hermite Polynomials. Symmetry 2021, 13, 648. [Google Scholar] [CrossRef]
- Bayad, A.; Simsek, Y. On Generating Functions for Parametrically Generalized Polynomials Involving Combinatorial, Bernoulli and Euler Polynomials and Numbers. Symmetry 2022, 14, 654. [Google Scholar] [CrossRef]
- Tongsomporn, J.; Wananiyakui, S.; Steuding, J. The Values of the Periodic Zeta-Function at the Nontrivial Zeros of Riemann’s Zeta-Function. Symmetry 2021, 13, 2410. [Google Scholar] [CrossRef]
- LeClair, A. Riemann Hypothesis and RandomWalks: The Zeta Case. Symmetry 2021, 13, 2014. [Google Scholar] [CrossRef]
- Hwang, K.W.; Agarwal, R.P.; Ryoo, C.S. Symmetric Properties for Dirichlet-Type Multiple (p,q)-L-Function. Symmetry 2021, 13, 95. [Google Scholar] [CrossRef]
- Bayad, A.; Simsek, Y. p-Adic q-Twisted Dedekind-Type Sums. Symmetry 2021, 13, 1756. [Google Scholar] [CrossRef]
- Ryoo, C.S. Some Symmetry Identities for Carlitz’s Type Degenerate Twisted (p,q)-Euler Polynomials Related to Alternating Twisted (p,q)-Sums. Symmetry 2021, 13, 1371. [Google Scholar] [CrossRef]
- Usman, T.; Saif, M.; Choi, J. Certain Identities Associated with (p,q)-Binomial Coefficients and (p,q)-Stirling Polynomials of the Second Kind. Symmetry 2020, 12, 1436. [Google Scholar] [CrossRef]
- Reynolds, R.; Stauffer, A. A Note on a Triple Integral. Symmetry 2021, 13, 2056. [Google Scholar] [CrossRef]
- Srivastava, H.M. A Survey of Some Recent Developments on Higher Transcendental Functions of Analytic Number Theory and Applied Mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Battaloglu, R.; Simsek, Y. On New Formulas of Fibonacci and Lucas Numbers Involving Golden Ratio Associated with Atomic Structure in Chemistry. Symmetry 2021, 13, 1334. [Google Scholar] [CrossRef]
- Park, H.; Cho, B.; Cho, D.; Cho, Y.D.; Park, J. Representation of Integers as Sums of Fibonacci and Lucas Numbers. Symmetry 2020, 12, 1625. [Google Scholar] [CrossRef]
- Gunes, A.Y.; Delen, S.; Demirci, M.; Cevik, A.S.; Cangui, I.N. Fibonacci Graphs. Symmetry 2020, 12, 1383. [Google Scholar] [CrossRef]
- Laipaporn, K.; Phibul, K.; Khachorncharoenkul, P. The metallic ratio of pulsating Fibonacci sequences. Symmetry 2022, 14, 1204. [Google Scholar] [CrossRef]
- Larsen, S.H. DNA structure and the Golden ratio revisited. Symmetry 2021, 13, 1949. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Planat, M. Symmetry, Special Functions and Number Theory. Symmetry 2022, 14, 2367. https://doi.org/10.3390/sym14112367
Planat M. Symmetry, Special Functions and Number Theory. Symmetry. 2022; 14(11):2367. https://doi.org/10.3390/sym14112367
Chicago/Turabian StylePlanat, Michel. 2022. "Symmetry, Special Functions and Number Theory" Symmetry 14, no. 11: 2367. https://doi.org/10.3390/sym14112367
APA StylePlanat, M. (2022). Symmetry, Special Functions and Number Theory. Symmetry, 14(11), 2367. https://doi.org/10.3390/sym14112367