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Abstract: In this paper, a metamaterial absorber with a checkerboard patterned ITO (indium tin oxide)
film as the surface is obtained by using flexible and optically transparent wave-absorbing material
ITO–PET (polyethylene terephthalate), and a coding arrangement of two basic coding units based
on the APS-PSO (Array Pattern Synthesis -Particle Swarm Optimization) algorithm. The surface
structure of the absorber consists of ITO rectangular patch structures and ITO circular patch structures
(110 Ω/sq). The ITO rectangular patch structures and ITO circular patch structures are symmetrical.
The middle layer is made up of two layers of PET and one layer of PMMA, and the bottom surface is
covered with a layer of low square resistance ITO film (8 Ω/sq). The experimental results, which
are consistent with the simulation results, show that the absorber has superior performance: over
90% absorptance in the 5.06–9.01 GHz band, high transmittance, and a −10 dBsm RCS (radar cross-
section) reduction in the 5.3–8.7 GHz band. This design also has polarization insensitivity and
angular stability.

Keywords: microwave absorber; coding metasurface; flexible and optically transparent; RCS reduction

1. Introduction

The metamaterial is an engineered periodic structure composed of subwavelength
units with extraordinary electromagnetic properties. It is used in a variety of applications in
the microwave to the terahertz frequency range [1–8]. Artificially construct metamaterials
can exhibit negative refractive indices [9], which can lead to new optical phenomena [10].
The metamaterial microwave absorber is designed by processing and designing the shape,
size, and method of combining artificial composite materials for producing efficient absorp-
tance in the very narrow or wide frequency bandwidth. At the moment, metamaterials are
used in industrial and military fields [11] such as communication, stealth and mid-infrared
and thermal detection devices [12]. Thus, research on metamaterial microwave absorbers is
crucial to improve the performance of these applications. In recent years, several microwave
absorbers with new properties [13,14] have been proposed, and the perfect microwave loss
characteristics can be achieved by designing the basic unit structure of the metamaterials.
Since the characteristics of a metamaterial depend primarily on the geometry, they can
be used in a specific electromagnetic spectrum. The perfect loss design of metamaterials
overcomes the thickness limitation of traditional absorbers, and the limitation of microwave
absorptance efficiency. In addition, depending on the substrate and geometries used, the
metasurface can be used for high quality switching between reflection and transmission,
phase control and significant resonant behavior within the spectral window of interest [15].

Metamaterial absorbers based on resistive films have thin profiles that are easier to
build and shape. Representative resistive materials that can be used for wave-absorbing
structures are ITO and ATO (antimony tin oxide), with ITO being more frequently cho-
sen due to its relatively high optical transparency [16]. Optical transparency can be a
critical requirement in certain application situations, for example, the plane windows
or the display screen glass that needs to shield the microwave yet transmit the visible
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light, and the radome, which needs to transmit both microwave and visible light. The
optically transparent absorbers are more suitable for displays, phones, and glass windows
of military vehicles [17,18].

In recent years, RCS reduction technology [19] has become an important research
element in electromagnetic stealth topics, which can be divided into two directions: one
uses the perfect metamaterial absorber (PMA) proposed by Landy in 2008 [20], which
adopts an ultra-thin structure and has a nearly single absorptance rate to achieve high
absorptance over a wide frequency band; the other uses the coding metasurface absorber
proposed by Tiejun Cui in 2014 [21], which employs various combinations of artificial
magnetic conductors to modulate the absorber surface phase, change its scattering field,
and achieve diffuse reflection, thereby reducing RCS.

In the field of electromagnetic shielding, new metamaterials and coding techniques
have been widely used in the microwave band [22]. The coding metasurface absorber
can be applied to the surface of an object to improve its RCS reduction, which is a novel
method of modulating microwaves that has great potential in radar stealth, imaging, and
broadband communication fields [23,24].

In this paper, we design an absorber using optically transparent absorbing material
(ITO) as the coding metasurface. Based on the APS-PSO algorithm, the spatial arrangement
of the encoded basic unit is designed by regulating the scattering field of the absorber
so that the incident electromagnetic wave is diffusely reflected and the RCS reduction is
achieved. It has over 90% absorptance in the 5.06–9.01 GHz band, high transmittance,
and a −10 dBsm RCS reduction band from 5.3–8.7 GHz. This design also has polarization
insensitivity and angular stability, with promising applications in flat panel displays, low
radiation glass, special functional window coatings, etc.

2. Design and Simulation

The structure of a rectangular patch and a circular patch unit is shown in Figure 1.
The structure of a rectangular patch unit is shown in Figure 1a, where the top layer of the
unit consists of four 13 mm × 13 mm rectangular ITO film patches with a square resistance
of 110 Ω/sq. The structure of a circular patch unit is shown in Figure 1b, where the top
layer of the unit is made up of four circular ITO film patches with a radius of 3 mm and a
square resistance of 110 Ω/sq. The ITO rectangular patch structures and ITO circular patch
structures are symmetrical.
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Figure 1. Unit structure. (a) Top view of rectangular patch. (b) Top view of circular patch. (c) Side 
view of the unit. 
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As shown in Figure 1c, both rectangular and circular unit structures have a sandwich
structure consisting of five layers. The upper surface is made up of a simple patterned ITO
thin film resistive patch (Rs1 = 110 Ω/sq). The ground plane is made of a low-resistance
ITO thin film (Rs2 = 8 Ω/sq), which completely reflects the incident wave and ensures that
the microwave cannot pass through the absorber. The ITO films are printed on both the
upper surface and the ground plane on two flexible polyethylene terephthalate (PET) sheets
(relative permittivity of 3.0, dielectric loss tangent of 0.06, and thickness of hs). PMMA
(relative permittivity of 2.25, dielectric loss tangent of 0.01, thickness of hp) is in the middle
of two PET layers. Therefore, the PMMA layer is the middle layer of the sandwich structure.
To ensure the high light transmission of the proposed metamaterial absorber, all materials
used in the design have high visible light transmission. In this paper, we use 110 Ω/sq ITO
film to form a patterned resistive metasurface to efficiently dissipate the incident energy.
The resistance of ITO films can be fine-tuned by precisely controlling the film thickness. The
detail of the parameters of the proposed structure, shown in Figure 1, is given in Table 1.

Table 1. The parameters of the unit structure shown in Figure 1.

hs hp w p r RS1 RS2

0.3 mm 5.6 mm 13 mm 30 mm 3 mm 110 Ω 8 Ω

As the frequency increases, the reflection coefficient phase of the proposed unit struc-
ture changes from +180◦ to −180◦ (Figure 2a). At the resonant frequency of 3.4 GHz, the
reflection phase of the circular patch reaches 0◦ and the reflection coefficient at the resonant
frequency is −0.57 dB (Figure 2b). At the resonant frequency of 3.22 GHz, the reflection
phase of the rectangular patch reaches 0◦ and the reflection coefficient at the resonant
frequency is −8.82 dB, which is attributed to the dielectric and radiation losses. Because of
the 180◦ reflection phase difference between them, they can be used as “0” and “1” in the
coding sequence to increase the frequency bandwidth of the RCS reduction.
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Figure 2. (a) Phase difference of absorber unit as a function of frequency. (b) Reflection coefficient of
absorber unit as a function of frequency.

Different coding sequences yield different electromagnetic properties, so the opti-
mization of the coding sequences is particularly important to enhance the performance of
the absorber and the RCS reduction. Based on the particle swarm algorithm, the spatial
arrangement of the encoded basic unit is designed by regulating the scattering field of
the absorber so that the incident electromagnetic wave is diffusely reflected and the RCS
reduction is achieved. Combining the integrated algorithm of PSO and APS, the phase
of the coding metasurface can be optimized quickly to obtain the best performance of the
coding metasurface absorber. The PSO module evaluates the fitness in each iteration, keeps
track of the particle velocities and population positions, and then shares the information
with the APS module using the APS-PSO algorithm to encode the above two basic encoding
units in an arrangement. The algorithm is implemented using Matlab, and the population
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particle position, i.e., the coding sequence is optimized and considered as a random matrix
(containing only 0 and 1), as is the particle velocity.

The metasurface cell structure has an initial value of 0 or 1 corresponding to 0 or π.
The curve of the fitness function obtained by numerical optimization using Matlab is shown
in Figure 3. It can be seen that the curve decreases rapidly in the initial stage and then
stabilizes, indicating that the APS-PSO algorithm has high efficiency.
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Figure 3. Adaptive evolution curve.

The APS module calculates the RCS reduction with the current phase arrangement,
and then calculates the fitness function value and returns it to the PSO module. After
several iterations, the phase arrangement of the coding metasurface with the maximum
RCS reduction is obtained. The structure of the coding sequence absorber is shown in
Figure 4.
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The simulation of the optically transparent absorber is performed by finite integration
technique using the CST MWS software. Floquet ports with normal incident plane trans-
verse electric (TE) waves and transverse magnetic (TM) waves were set in the z-direction
for excitation. Periodic boundary conditions (PBCs) along the x and y directions were used
to simulate the infinite periodic element, and frequency-dependent complex S parameters
can be simulated by the frequency domain solver.

To maximize the absorptance A(ω), we need to minimize the reflectance R(ω) and
transmittance T(ω). The absorptance of a microwave absorber is usually expressed by the
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reflectance R(ω) and transmittance T(ω), both of which depend on the frequency of the
incident electromagnetic wave. They can be defined as:

A(ω) = 1− R(ω)− T(ω) (1)

A(ω) = 1− |S11|2 − |S21|2 (2)

Transmittance (T(ω) = |S21|2 T(ω) = |S21|2) and reflectance (R(ω) = |S11|2) are
shown separately in the form of S parameters [25].

To describe the characteristics of microwave absorbers, the effective medium param-
eters, the effective permittivity εeff(ω), and the effective permeability µeff(ω) can be used.
Figure 5a,b show the effective permittivity εeff(ω) and the effective permeability µeff(ω),
respectively. It can be observed that the real part of both parameters is close to zero at
the absorptance frequency, which indicates that the reflectivity is close to zero. Figure 5c
shows the simulated effective impedance normalized by the free-space impedance, and the
effective impedance of the absorbing structure can be expressed as [26]:

Ze f f =

√
µe f f (ω)

εe f f (ω)
=

√√√√ (1 + S11)
2 − S21

2

(1− S11)
2 − S21

2
(3)

The real part of the effective impedance fluctuates around 1 in the 4.5–9.45 GHz
frequency range, while the imaginary part is almost zero in the 6.3–8.7 GHz frequency
range. We can conclude that the input impedance of the structure is almost matched
with the impedance matching free space Z0 of the structure, and the impedance of the
microwave absorber is perfectly matched with the free space due to the rational and optimal
design of the unit structure. Therefore, the perfect microwave absorptance is achieved by
simultaneously reducing transmittance and reflectance to maximize the absorptance rate.
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Figure 5. Retrieved constitutive parameters, absorptance, reflectance, and transmittance. (a) Effective
permittivity. (b) Effective permeability. (c) Effective impedance. (d) Absorptance, reflectance, and
transmittance characteristics.
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Figure 5d shows the simulated absorptance, reflectance, and transmittance of the
proposed absorber. It has a good absorptance characteristic of over 90% in the 5.06–9.01 GHz
band.

In order to explain the influence of the upper resistive film on the absorptance per-
formance of the proposed structure, the reflectivity of the absorber at different resistance
values (RS1) of the upper layer was investigated. As illustrated in Figure 6, as the resistance
of the top layer increases, there is an optimum value of sheet resistance (RS1 = 110 Ω/sq) to
achieve the lowest reflection coefficient (−45.21 dB). In this case, the absorptance of more
than 90% was achieved in the frequency range of 5.06–9.01 GHz.
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(RS1) values.

To better understand the absorptance mechanism, the surface current distribution on
the top layer at 7.72 GHz is shown in Figure 7. The surface current is mainly distributed on
the surface of the rectangular unit, as opposed to the circular unit, where a smaller current
distribution can be seen. When the current distribution on the surface increases, the ohmic
loss on the resistive film also increases, thus converting more electromagnetic energy into
heat, thereby the absorptance rate achieves its maximum value.
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As shown in Figure 8, the absorptance remains above 90% at polarization angles
ranging from 0 to 90◦, while the absorptance band remains nearly unchanged, which
illustrates the polarization insensitivity of the absorber. The simulation confirms the
polarization insensitivity of the proposed optically transparent absorber.
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In addition to polarization stability, absorbers must have good angular stability in
many applications. The simulated absorptance spectra at different oblique illumination
incidences for the TE and TM modes show that the absorptance bands slowly and gradually
shift to the higher frequency range (Figure 9). When irradiated in the TE mode, the
absorptance remains above 90% at incidence angles ranging from 0 to 15◦, while the
structure of the absorptance band remains almost unchanged. For the TM mode, the
stability of the absorptance at different incidence angles is also similar to the TE mode data.
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In general, the absorptance of the metamaterial absorber exceeds 80% for incident
angles ranging from 0 to 45◦ over the entire operating bandwidth of both TM and TE modes.
This result shows that the proposed design has a reasonably stable angular performance.

The RCS of an ITO-coding metasurface with a cross-section of 240 mm × 240 mm and
the perfect electric conductor (PEC) of the same size are simulated and the results are shown
in Figure 10. It can be seen that the proposed coding metasurface absorber scatters and
spreads the incident electromagnetic wave energy in all directions when the frequency of
the incident electromagnetic wave is 7.0 GHz. Furthermore, the energy scattered out in each
direction is not strong, indicating that the absorber has good RCS scaling characteristics.
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At the same time, the absorber achieves an RCS reduction of more than −10 dBsm in
the frequency band of 5.3–8.7 GHz, which is significantly higher than the perfect electric
conductor (PEC) of the same size.

3. Experimental Verification

In order to verify the absorptance properties of the proposed optically transparent
absorber, samples were fabricated and measured in a microwave darkroom. The total size
of the sample was 240 mm × 240 mm. The upper ITO film with a thin layer of resistance of
110 Ω/sq was deposited on the PET substrate by magnetron sputtering, and the bottom
8 Ω/sq ITO film was fabricated in the same way. Then, the upper resistive film was
patterned by laser ablation of the ITO coating. In order to improve the optical transparency
at the same time, a PMMA structure was used in our construction, which also helps to
widen the application field. Finally, the upper PET layer and the lower PET layer were
adhered to a 5.6 mm PMMA layer, respectively, using transparent double-sided adhesive.
The sample optical transparency of the absorber is shown and experiment in Figure 11.

It can be seen in Figure 11a that the prepared experimental samples have good opti-
cally transparent properties. Figure 11b depicts the experimental arrangement used for
measuring the proposed optically transparent absorber. Figure 11c shows the test environ-
ment of the sample. One of the corner antennas acts as the source (transmitting antenna)
and the other acts as the end (receiving antenna), where both antennas are connected to a
vector network analyzer (VNA).
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Figure 11. (a) Optical transparency experimental sample. (b) Schematic of the arrangement used for
measuring the proposed optically transparent absorber. (c) Photograph of the test environment.

The transmittance (S21) and reflectance (S11) were measured under two different
conditions: a metal plate, and the designed absorber. Then, the absorptance is calculated
using the following equation [26]:

A(ω) = 1− (|S11|2sample − |S11|2metal)− (|S21|2sample − |S21|2Air) (4)

The environmental effects can be subtracted using this method, and accurate measure-
ments can be obtained. The experimentally obtained absorptance curve of the sample and
S11 are shown in Figure 12. To improve the measurement accuracy, the main flap of the
antenna should point to the center of the absorber during each measurement.
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4. Discussion

Finally, the characteristics of optically transparent or flexible microwave absorbers
reported in recent years are summarized in Figure 13. In comparison to previously reported
optically transparent microwave absorbers, the proposed receivers have higher reflection
coefficients and better flexible and optically transparent properties.
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5. Conclusions

In this paper, a metamaterial absorber with a checkerboard patterned ITO film as the
surface is obtained by using flexible and optically transparent wave-absorbing material
(ITO-PET) and a coding arrangement of two basic coding units based on the APS-PSO
algorithm. The experimental results, which are consistent with the simulation results, show
that the absorber has superior performance: over 90% absorptance in the 5.06–9.01 GHz
band, high transmittance, and a −10 dBsm RCS reduction in the 5.3–8.7 GHz band. This
design also has polarization insensitivity and angular stability, with promising applications
in flat panel displays, low radiation glass, special functional window coatings, etc.
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