Simplified Procedure for Capacity Check of Historic Monolithic Glass Windows under Soft-Body Collision/Bird-Strike
Abstract
:1. Introduction
2. Background
3. SPH–FE Numerical Investigation
3.1. Modeling Strategy
3.2. Glass Panel
3.3. SPH Bird
3.4. Preliminary Validation
4. Parametric SPH–FE Numerical Analysis
4.1. Impact Response
4.2. Failure Mechanism
4.3. Impactor Size
4.4. Target Point
5. Empirical Approach for Vulnerability and Capacity Check
5.1. Operational Steps of Simplified Procedure
- First occurrence of minor damage/damage initiation (noted as D1 damage level), without visible cracks in glass, but with measurable degradation;
- First occurrence of severe damage (D2);
- First occurrence of shot-like damage (D3).
- Monolithic glass panels only are taken into account;
- Rigid linear restraints are considered at the edges of glass, and any kind of possible damage in boundaries is disregarded;
- Shape of target glass panel (i.e., non-rectangular panes could suffer for additional sensitivity effects);
- Glass type (float annealed glass is only considered, disregarding any pre-stress contribution);
- Boundary conditions (linearly restraints are taken into account, disregarding other boundary configurations of typical use for glass panels);
- Maximum impact energy of 400 J, following the above point.
5.2. Application of Simplified Procedure to Full-Size Envelopes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Metz, I.C.; Ellerbroek, J.; Mühlhausen, T.; Kügler, D.; Hoekstra, J.M. Analysis of risk-based operational bird strike prevention. Aerospace 2021, 8, 32. [Google Scholar] [CrossRef]
- Federal Aviation Administration, Dept. of Transportation. Bird Strike Damage. Part 25 Airworthiness Standards: Transport Category Airplanes; Sec. 25.631; Federal Aviation Administration: Washington, DC, USA, 2003. [Google Scholar]
- Plassard, F.; Héreil, P.-L.; Joseph, P.; Mespoulet, J. Experimental and numerical study of a bird strike against a windshield. EPJ Web Conf. 2015, 94, 01051. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, Y.; Gao, X. Bird strike on a flat plate: Experiments and numerical simulations. Int. J. Impact. Eng. 2014, 70, 21–37. [Google Scholar] [CrossRef]
- Airoldi, A.; Cacchione, B. Modelling of Impact Forces and Pressures in Lagrangian Bird Strike Analyses. Int. J. Impact. Eng. 2006, 32, 1651–1677. [Google Scholar] [CrossRef]
- Smojver, I.; Ivančević, D. Numerical Simulation of Bird Strike Damage Prediction in Airplane Flap Structure. Comp. Struct. 2019, 92, 2016–2026. [Google Scholar] [CrossRef]
- McCarthy, M.; Xiao, J.R.; McCarthy, C.; Kamoulakos, A.; Ramos, J.; Gallard, J.P.; Melito, V. Modeling of bird Strike on an Aircraft Wing Leading Edge Made from Fiber Metal Laminates—Part 1: Material Modeling. Appl. Comp. Mater. 2004, 11, 295–315. [Google Scholar] [CrossRef]
- Goyal, V.K.; Huertas, C.A.; Vasko, T.J. Bird-strike modeling based on the Lagrangian formulation using LS-DYNA. Am. Trans. Eng. Appl. Sci. 2013, 2, 57–81. [Google Scholar]
- Heimbs, S. Computational methods for bird strike simulations: A review. Comput. Struct. 2011, 89, 2093–2112. [Google Scholar] [CrossRef]
- Smetankina, N.; Malykhina, A.; Merkulov, D. Simulating of Bird Strike on Aircraft Laminated Glazing. MATEC Web Conf. 2019, 304, 01010. [Google Scholar] [CrossRef]
- Feldmann, M.; Kasper, R.; Abeln, B.; Cruz, P.; Belis, J.; Beyer, J. Guidance for European Structural Design of Glass Components—Support to the Implementation, Harmonization and Further Development of the Eurocodes; Report EUR 26439; Dimova, P., Feldmann, D., Eds.; Joint Research Centre–Institute for the Protection and Security of the Citizen: Ispra, Italy, 2014. [Google Scholar] [CrossRef]
- Henriksen, T.; Hansen, S.O. Design of Glass for High, Short Duration Wind Loads. In Proceedings of the Challenging Glass 2–International Conference on the Architectural and Structural Application of Glass 2010, Delft, The Netherlands, 20–21 May 2010; Volume 2, pp. 627–637. [Google Scholar] [CrossRef]
- Overend, M.; Zammit, K.; Hargreaves, D. Applications of computational wind engineering in the design of glass facades. Proc. Glass Perform. Days 2007, 2007, 444–448. [Google Scholar]
- Pomaranzi, G.; Bistoni, O.; Schito, P.; Rosa, L.; Zasso, A. Wind effects on a permeable double skin façade—The ENI head office case study. Fluids 2011, 6, 415. [Google Scholar] [CrossRef]
- Bedon, C.; Zhang, X.; Santos, F.; Honfi, D.; Kozłowski, M.; Arrigoni, M.; Figuli, L.; Lange, D. Performance of structural glass facades under extreme loads—Design methods, existing research, current issues and trends. Constr. Build. Mater. 2018, 163, 921–937. [Google Scholar] [CrossRef]
- Casagrande, L.; Bonati, A.; Occhiuzzi, A.; Caterino, N.; Auricchio, F. Numerical investigation on the seismic dissipation of glazed curtain wall equipped on high-rise buildings. Eng. Struct. 2019, 179, 225–245. [Google Scholar] [CrossRef]
- Sucuoǧlu, H.; Vallabhan, C. Behaviour of window glass panels during earthquakes. Eng. Struct. 1997, 19, 685–694. [Google Scholar] [CrossRef]
- Bedon, C.; Amadio, C.; Noè, S. Safety issues in the seismic design of secondary frameless glass structures. Safety 2019, 5, 80. [Google Scholar] [CrossRef] [Green Version]
- Biolzi, L.; Bonati, A.; Cattaneo, S. Laminated Glass Cantilevered Plates under Static and Impact Loading. Adv. Civ. Eng. 2018, 2018, 7874618. [Google Scholar] [CrossRef] [Green Version]
- Figuli, L.; Papan, D.; Papanova, Z.; Bedon, C. Experimental mechanical analysis of traditional in-service glass windows subjected to dynamic tests and hard body impact. Smart Struct. Syst. 2021, 27, 365. [Google Scholar] [CrossRef]
- Schneider, J.; Schula, S. Simulating soft body impact on glass structures. Proc. Inst. Civ. Eng. Struct. Build. 2016, 169, 416–431. [Google Scholar] [CrossRef]
- Bez, A.; Bedon, C.; Manara, G.; Amadio, C.; Lori, G. Calibrated Numerical Approach for the Dynamic Analysis of Glass Curtain Walls under Spheroconical Bag Impact. Buildings 2021, 11, 154. [Google Scholar] [CrossRef]
- Deng, R.-B.; Jin, X.-L. Numerical simulation for blast analysis of insulating glass in a curtain wall. Int. J. Comput. Meth. Eng. Sci. Mech. 2010, 11, 162–171. [Google Scholar] [CrossRef]
- Larcher, M.; Arrigoni, M.; Bedon, C.; van Doormaal, J.C.A.M.; Haberacker, C.; Hüsken, G.; Millon, O.; Saarenheimo, A.; Solomos, G.; Thamie, L.; et al. Design of Blast-Loaded Glazing Windows and Facades: A Review of Essential Requirements towards Standardization. Adv. Civ. Eng. 2016, 2016, 2604232. [Google Scholar] [CrossRef] [Green Version]
- Pelfrene, J.; Kuntsche, J.; Van Dam, S.; Van Paepegem, W.; Schneider, J. Critical assessment of the post-breakage performance of blast loaded laminated glazing: Experiments and simulations. Int. J. Imp. Eng. 2016, 88, 61–71. [Google Scholar] [CrossRef]
- Larcher, M.; Solomos, G.; Casadei, F.; Gebbeken, N. Experimental and numerical investigations of laminated glass subjected to blast loading. Int. J. Imp. Eng. 2012, 39, 42–45. [Google Scholar] [CrossRef]
- Bedon, C.; Amadio, C. Numerical assessment of vibration control systems for multi-hazard design and mitigation of glass curtain walls. J. Build. Eng. 2018, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Meng, Q.; Bedon, C.; Sielicki, P.W. Strengthening of Laminated Glass Windows against Windborne Debris Impact. Int. J. Struct. Glass Adv. Mater. Res. 2020, 4, 209–224. [Google Scholar] [CrossRef]
- Haldimann, M.; Luible, A.; Overend, M. Structural Use of Glass; IABSE: Zurich, Switzerland, 2008. [Google Scholar]
- CNR-DT 210/2013; Istruzioni per la Progettazione, L’esecuzione ed il Controllo di Costruzioni con Elementi Strutturali di Vetro; Guide for the Design, Construction and Control of Buildings with Structural Glass Elements. National Research Council of Italy (CNR): Roma, Italy, 2013.
- EN 572–2:2004; Glass in buildings—Basic soda lime silicate glass products. CEN: Brussels, Belgium, 2004.
- American Bird Conservancy. Bird-Friendly Building Design. 2015. Available online: https://abcbirds.org/wp-content/uploads/2015/05/Bird-friendly-Building-Guide_2015.pdf (accessed on 27 August 2022).
- Goyal, V.K.; Huertas, C.A.; Vasko, T.J. Smooth particle hydrodynamic approach for bird-strike analysis using LS-DYNA. Am. Trans. Eng. Appl. Sci. 2013, 2, 83–107. [Google Scholar]
- Simulia. Abaqus Computer Software; Simulia: Providence, RI, USA, 2021. [Google Scholar]
- CEN EN 12600:2002; Glass in Building—Pendulum Test—Impact Test Method and Classification for Flat Glass. Beuth: Berlin, Germany, 2002.
- DIN 18008-4; Glas im Bauwesen—Bemessungs-und Konstruktionsregeln—Teil 4: Zusatzanforderungen an absturzsichernde Verglasungen. Beuth: Berlin, Germany, 2013.
- Santi, M.V.; Frangipane, A. Documenting the Factory-Town of Torviscosa (NE Italy): 1938–2020. In Proceedings of the Inheritable Resilience: Sharing Values of Global Modernities—16th International Docomomo Conference, Tokyo, Japan, 10–14 September 2021; p. 172877. [Google Scholar]
- Phasianus colchicus, Avibase—The World Bird Database. Available online: https://avibase.bsc-eoc.org/species.jsp?lang=EN&avibaseid=4B9EEF568857FB51 (accessed on 7 October 2022).
- Columba livia. Avibase—The World Bird Database. Available online: https://avibase.bsc-eoc.org/species.jsp?lang=EN&avibaseid=BBA263C235B15B88 (accessed on 7 October 2022).
- Lavoie, M.A.; Gakwaya, A.; Nejad Ensan, M.; Zimcik, D.G. Validation of Available Approaches for Numerical Bird Strike Modeling Tools. Int. Rev. Mech. Eng. 2007, 1, 380–389. [Google Scholar]
- Lavoie, M.; Gakwaya, A.; Ensan, M.N.; Zimcik, D.; Nandlall, D. Bird’s substitute tests results and evaluation of available numerical methods. Int. J. Imp. Eng. 2009, 36, 1276–1287. [Google Scholar] [CrossRef]
- Guida, M.; Marulo, F.; Meo, M.; Grimaldi, A.; Olivares, G. SPH—Lagrangian study of bird impact on leading edge wing. Comp. Struct. 2011, 93, 1060–1071. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, C.; Huo, S.; Chai, X.; Liu, Z.; Yan, K. Experimental and numerical simulation of bird-strike performance of lattice-material-infilled curved plate. Chin. J. Aeron. 2021, 34, 245–257. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, Y.; Huang, T. Huang. SPH-FEM Design of Laminated Plies under Bird-Strike Impact. Aerospace 2019, 6, 112. [Google Scholar] [CrossRef] [Green Version]
- Riccio, A.; Cristiano, R.; Saputo, S.; Sellitto, A. Numerical methodologies for simulating bird-strike on composite wings. Comp. Struct. 2018, 202, 590–602. [Google Scholar] [CrossRef]
- Allaeys, F.; Luyckx, G.; Van Paepegem, W.; Degrieck, J. Characterization of real and substitute birds through experimental and numerical analysis of momentum, average impact force and residual energy in bird strike on three rigid targets: A flat plate, a wedge and a splitter. Int. J. Imp. Eng. 2017, 99, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Naceur, H.; Coutellier, D.; Abrate, S. Numerical modelling of the low-velocity impact of composite plates using a shell-based SPH method. Meccanica 2015, 50, 2649–2660. [Google Scholar] [CrossRef]
- Lin, J.; Guan, Y.; Li, J.; Huang, L.; Naceur, H.; Coutellier, D. Meshless modelling of low-velocity impacting damage for composite laminates. Ferroelectrics 2018, 527, 93–106. [Google Scholar] [CrossRef]
- Guo, Q.; Gou, Y.; Chen, J.; Zhang, Y.; Zhou, Y. Dynamic response of foam concrete under low-velocity impact: Experiments and numerical simulation. Int. J. Imp. Eng. 2020, 146, 103693. [Google Scholar] [CrossRef]
- Birnbaum, N.K.; Francis, N.J.; Gerber, B.I. Coupled Techniques for the Simulation of Fluid-Structure and Impact Problems. Comput. Ass. Mech. Eng. Sci. 1999, 6, 295–311. [Google Scholar]
- Saputo, S.; Sellitto, A.; Riccio, A.; Di Caprio, F. Crashworthiness of a Composite Wing Section: Numerical Investigation of the Bird Strike Phenomenon by Using a Coupled Eulerian-Lagrangian Approach. J. Mater. Eng. Perform. 2019, 28, 3228–3238. [Google Scholar] [CrossRef]
- Bedon, C.; Santi, M.V. Vulnerability and Structural Capacity Assessment of Historic Glass Facades under Bird-Strike. Math. Prob. Eng. 2022, 2022, 6059466. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, H. The response of glass window systems to blast loadings: An overview. Int. J. Protect. Struct. 2016, 7, 123–154. [Google Scholar] [CrossRef] [Green Version]
- Bedon, C.; Louter, C. Exploratory numerical analysis of SG-laminated reinforced glass beam experiments. Eng. Struct. 2014, 75, 457–468. [Google Scholar] [CrossRef]
- Mc Callum, S.C.; Constantinou, C. The Influence of Bird-Shape in Bird-Strike Analysis. In Proceedings of the 5th European LS-DYNA Users Conference, Birmingham, UK, 25–26 May 2005. [Google Scholar]
- Hedayati, R.; Ziaei-Rad, S. A new bird model and the effect of bird geometry in impacts from various orientations. Aer. Sci. Tech. 2013, 28, 9–20. [Google Scholar] [CrossRef]
- Cwiklak, J. Influence of a bird model shape on the bird impact parameters. Facta Univ. Ser. Mech. Eng. 2020, 18, 639–651. [Google Scholar] [CrossRef]
- Georgiadis, S.; Gunnion, A.J.; Thomson, R.S.; Cartwright, B.K. Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge. Comp. Struct. 2008, 86, 258–268. [Google Scholar] [CrossRef]
- Johnson, A.F.; Holzapfel, M. Modelling soft body impact on composite structures. Comp. Struct. 2003, 63, 103–113. [Google Scholar] [CrossRef]
- Smojver, I.; Ivančević, D. Bird strike damage analysis in aircraft structures using Abaqus/Explicit and coupled Eulerian Lagrangian approach. Comp. Sci. Tech. 2011, 71, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Valdi, M.H.T.; Atrechian, M.R.; Shalkoohy, A.J.; Chavoshi, E. Numerical Investigation of Water Entry Problem of Pounders with Different Geometric Shapes and Drop Heights for Dynamic Compaction of the Seabed. Geofluids 2018, 2018, 5980386. [Google Scholar] [CrossRef] [Green Version]
- Ahmadzadeh, M.; Saranjam, B.; Fard, A.H.; Binesh, A. Numerical simulation of sphere water entry problem using Eulerian-Lagrangian method. App. Math. Model. 2014, 38, 1673–1684. [Google Scholar] [CrossRef]
- Bedon, C.; Santarsiero, M. Laminated glass beams with thick embedded connections—Numerical analysis of full-scale specimens during cracking regime. Comp. Struct. 2018, 195, 308–324. [Google Scholar] [CrossRef]
- Martens, K.; Caspeele, R.; Belis, J. Numerical investigation of two-sided reinforced laminated glass beams in statically indeterminate systems. Glass Struct. Eng. 2016, 1, 417–431. [Google Scholar] [CrossRef]
Impactor Type | M (kg) | Eimp (J) |
---|---|---|
Pheasant (Phasianus colchicus) | 1.3–1.81 | 260–360 |
Pigeon (Columba livia) | 0.25–0.38 | 200–300 |
Strain Rate (s−1) | DIF (Figure 5c) | Fracture Strength (Equation (2)) (MPa) | Fracture Strain (Equation (3)) |
---|---|---|---|
1.00 × 10−4 | 1.00 | 45.00 | 6.429 × 10−4 |
1.00 × 10−3 | 1.00 | 45.00 | 6.429 × 10−4 |
1.00 × 10−2 | 1.01 | 45.45 | 6.493 × 10−4 |
1.00 × 10−1 | 1.02 | 45.90 | 6.557 × 10−4 |
1.00 | 1.03 | 46.35 | 6.621 × 10−4 |
1.00 × 101 | 1.04 | 46.80 | 6.686 × 10−4 |
1.00 × 102 | 1.06 | 47.70 | 6.814 × 10−4 |
1.00 × 103 | 1.14 | 51.30 | 7.329 × 10−4 |
5.00 × 103 | 1.25 | 56.25 | 8.036 × 10−4 |
1.00 × 104 | 1.55 | 69.75 | 9.964 × 10−4 |
1.35 × 104 | 2.16 | 97.20 | 1.389 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedon, C.; Santi, M.V. Simplified Procedure for Capacity Check of Historic Monolithic Glass Windows under Soft-Body Collision/Bird-Strike. Symmetry 2022, 14, 2198. https://doi.org/10.3390/sym14102198
Bedon C, Santi MV. Simplified Procedure for Capacity Check of Historic Monolithic Glass Windows under Soft-Body Collision/Bird-Strike. Symmetry. 2022; 14(10):2198. https://doi.org/10.3390/sym14102198
Chicago/Turabian StyleBedon, Chiara, and Maria Vittoria Santi. 2022. "Simplified Procedure for Capacity Check of Historic Monolithic Glass Windows under Soft-Body Collision/Bird-Strike" Symmetry 14, no. 10: 2198. https://doi.org/10.3390/sym14102198
APA StyleBedon, C., & Santi, M. V. (2022). Simplified Procedure for Capacity Check of Historic Monolithic Glass Windows under Soft-Body Collision/Bird-Strike. Symmetry, 14(10), 2198. https://doi.org/10.3390/sym14102198