The Mei Symmetries for the Lagrangian Corresponding to the Schwarzschild Metric and the Kerr Black Hole Metric
Abstract
:1. Introduction
2. Mathematical Preliminaries
Method for Determining Mei Symmetries
3. The Mei Symmetries Corresponding to Lagrangian of the Schwarzschild Metric
4. The Mei Symmetries for the Lagrangian Corresponding to the Kerr Black Hole Metric
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Candotti, E.; Palmieri, C.; Vitale, B. On the inversion of Noether’s theorem in classical dynamical systems. Am. J. Phys. 1972, 40, 424–429. [Google Scholar] [CrossRef]
- Lutzky, M. Dynamical symmetries and conserved quantities. J. Phys. Math. Gen. 1979, 12, 973–981. [Google Scholar] [CrossRef]
- Noether, E. Invariant variations problem. Nachr. Akad. Wiss. Göttingen Math. Phys. 1918, 2, 235–237. [Google Scholar] [CrossRef] [Green Version]
- Duan, L. Noether theorem and its inverse of nonholonomic nonconservative dynamical system. Sci. China (Ser. A) 1990, 20, 1189. [Google Scholar]
- Lie, S. Über die Integration durch bestimmte Integrale von einer Classe linearer partieller Differentialgleichungen. Cammermeyer 1880, 6, 328–368. [Google Scholar]
- Mei, F.X. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems; Science Press: Beijing, China, 1999. [Google Scholar]
- Noether, E. Invariant variation problems. Transp. Theory Stat. Phys. 1971, 1, 186–207. [Google Scholar] [CrossRef] [Green Version]
- Mei, F.X. Form Invariance of Lagrange System. J. Beijing Inst. Technol. 2000, 9, 120–124. [Google Scholar]
- Fang, G.; Luan, X.W.; Jiang, S.; Fang, J.H. Conserved quantities of conservative continuous systems by Mei symmetries. Acta Mech. 2017, 228, 4083–4091. [Google Scholar] [CrossRef]
- Mei, F.X. Form invariance of Appell equations. Chin. Phys. 2001, 10, 177–180. [Google Scholar]
- Wang, S.-Y.; Mei, F.-X. Form invariance and Lie symmetry of equations of non-holonomic systems. Chin. Phys. 2002, 11, 5–8. [Google Scholar]
- Fang, J.-H. Mei symmetry and Lie symmetry of the rotational relativistic variable mass system. Commun. Theor. Phys. 2003, 40, 269–272. [Google Scholar]
- Jiang, W.A.; Liu, K.; Xia, Z.W.; Chen, M. Mei symmetry and new conserved quantities for non-material volumes. Acta Mech. 2018, 229, 3781–3786. [Google Scholar] [CrossRef]
- Zhai, X.H.; Zhang, Y. Mei symmetry of time-scales Euler-Lagrange equations and its relation to Noether symmetry. Acta Phys. Pol. A 2019, 136, 439–443. [Google Scholar] [CrossRef]
- Zhai, X.H.; Zhang, Y. Mei symmetry and new conserved quantities of time-Scale Birkhoff’s equations. Complexity 2020, 2020, 1691760. [Google Scholar] [CrossRef]
- Schwarzschild, K. Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften. Math. Phys. 1916, 7, 189–196. [Google Scholar]
- Kerr, R.P. Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett. 1963, 11, 237–238. [Google Scholar] [CrossRef]
- Hussain, I.; Mahomed, F.M.; Qadir, A. Second-order approximate symmetries of the geodesic equations for the Reissner-Nordström metric and re-scaling of energy of a test particle. SIGMA Symmetry Integr. Geom. Methods Appl. 2007, 3, 115. [Google Scholar] [CrossRef]
- Hussain, I.; Mahomed, F.M.; Qadir, A. Approximate Noether symmetries of the geodesic equations for the charged-Kerr spacetime and rescaling of energy. Gen. Relativ. Gravit. 2009, 41, 2399–2414. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asghar, N.S.; Iftikhar, K.; Feroze, T. The Mei Symmetries for the Lagrangian Corresponding to the Schwarzschild Metric and the Kerr Black Hole Metric. Symmetry 2022, 14, 2079. https://doi.org/10.3390/sym14102079
Asghar NS, Iftikhar K, Feroze T. The Mei Symmetries for the Lagrangian Corresponding to the Schwarzschild Metric and the Kerr Black Hole Metric. Symmetry. 2022; 14(10):2079. https://doi.org/10.3390/sym14102079
Chicago/Turabian StyleAsghar, Nimra Sher, Kinza Iftikhar, and Tooba Feroze. 2022. "The Mei Symmetries for the Lagrangian Corresponding to the Schwarzschild Metric and the Kerr Black Hole Metric" Symmetry 14, no. 10: 2079. https://doi.org/10.3390/sym14102079
APA StyleAsghar, N. S., Iftikhar, K., & Feroze, T. (2022). The Mei Symmetries for the Lagrangian Corresponding to the Schwarzschild Metric and the Kerr Black Hole Metric. Symmetry, 14(10), 2079. https://doi.org/10.3390/sym14102079