New Solution of the Sine-Gordon Equation by the Daftardar-Gejji and Jafari Method
Abstract
:1. Introduction
2. The Daftardar-Gejji and Jafari Method
3. The Method Convergence
4. Numerical Applications
4.1. Example 1
4.2. Example 2
4.3. Example 3
5. Conclusions
Funding
Conflicts of Interest
References
- Wang, X.Y. Exact and explicit solitary wave solutions for the generalized Fisher equation. J. Phys. Lett. A 1988, 131, 277–279. [Google Scholar] [CrossRef]
- Wadati, M. The exact solution of the modified Korteweg-de Vries equation. J. Phys. Soc. Jpn. 1972, 32, 1681–1687. [Google Scholar] [CrossRef]
- Nayak, M.K.; Wakif, A.; Animasaun, I.L.; Alaoui, M.S.H. Numerical Differential Quadrature Examination of Steady Mixed Convection Nanofluid Flows over an Isothermal Thin Needle Conveying Metallic and Metallic Oxide Nanomaterials: A Comparative Investigation. Arab. J. Sci. Eng. 2020, 45, 5331–5346. [Google Scholar] [CrossRef]
- Herbst, B.M.; Ablowitz, M.J. Numerical homoclinic instabilities in the sine-Gordon equation. Quaest. Math. 1992, 15, 345–363. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The tanh method: Exact solutions of the sine-Gordon and the sinh-Gordon equations. Appl. Math. Comput. 2005, 167, 1196–1210. [Google Scholar] [CrossRef]
- Kaya, D. A numerical solution of the sine-Gordon equation using the modified decomposition method. Appl. Math. Comput. 2003, 143, 309–317. [Google Scholar] [CrossRef]
- Ray, S.S. A numerical solution of the coupled sine-Gordon equation using the modified decomposition method. Appl. Math. Comput. 2006, 175, 1046–1054. [Google Scholar] [CrossRef]
- Batiha, B.; Noorani, M.S.M.; Hashim, I. Numerical solution of sine-Gordon equation by variational iteration method. Phys. Lett. A 2007, 370, 437–440. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef] [Green Version]
- Daftardar-Gejji, V.; Bhalekar, S. An Iterative method for solving fractional differential equations. PAMM Proc. Appl. Math. 2007, 7, 2050017–2050018. [Google Scholar] [CrossRef]
- Bhalekar, S.; Daftardar-Gejji, V. New iterative method: Application to partial differential equations. Appl. Math. Comput. 2008, 203, 778–783. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Bhalekar, S. Solving Fractional Diffusion-Wave Equations Using a New Iterative Method. Fract. Calc. Appl. Anal. 2008, 11, 193–202. [Google Scholar]
- Daftardar-Gejji, V.; Bhalekar, S. Solving fractional boundary value problems with Dirichlet boundary conditions using a new iterative method. Comput. Math. Appl. 2010, 59, 1801–1809. [Google Scholar] [CrossRef] [Green Version]
- Bhalekar, S.; Daftardar-Gejji, V. Convergence of the New Iterative Method. Int. J. Differ. Equ. 2011, 2011, 989065. [Google Scholar] [CrossRef]
- Mohyud-Din, S.T.; Yildirim, A. Syed Mohammad Mahdi Hosseini, Numerical Comparison of Methods for Hirota-Satsuma Model. Appl. Appl. Math. 2010, 5, 1558–1567. [Google Scholar]
- Mohyud-Din, S.T.; Yildirim, A.; Hosseini, M.M. An Iterative Algorithm for Fifth-order Boundary Value Problems. World Appl. Sci. J. 2010, 8, 531–535. [Google Scholar]
- Srivastava, V.; Rai, K.N. A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 2010, 51, 616–624. [Google Scholar] [CrossRef]
- Fard, O.S.; Sanchooli, M. Two Successive Schemes for Numerical Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind. Aust. J. Basic Appl. Sci. 2010, 4, 817–825. [Google Scholar]
- Bhalekar, S.; Daftardar-Gejji, V. Solving evolution equations using a new iterative method. Numer. Methods Partial Differ. Equ. 2010, 26, 906–916. [Google Scholar] [CrossRef]
- Ghori, M.B.; Usman, M.; Mohyud-Din, S.T. Numerical studies for solving a predictive microbial growth model using a new iterative Method. Int. J. Mod. Biol. Med. 2014, 5, 33–39. [Google Scholar]
- Patade, J.; Bhalekar, S. A new numerical method based on Daftardar-Gejji and Jafari technique for solving differential equations. World J. Model. Simul. 2015, 11, 256–271. [Google Scholar]
- Bakodah, H.O.; Ebaid, A. Exact solution of Ambartsumian delay differential equation and comparison with Daftardar-Gejji and Jafari approximate method. Mathematics 2018, 6, 331. [Google Scholar] [CrossRef] [Green Version]
- Daftardar-Gejji, V.; Sukale, Y.; Bhalekar, S. A new predictor-corrector method for fractional differential equations. Appl. Math. Comput. 2014, 244, 158–182. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Sukale, Y.; Bhalekar, S. Solving fractional delay differential equations: A new approach. Fract. Calc. Appl. Anal. 2015, 16, 400–418. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I. Three-step iterative methods for nonlinear equations. Appl. Math. Comput. 2006, 183, 322–327. [Google Scholar]
- Noor, M.A. New iterative schemes for nonlinear equations. Appl. Math. Comput. 2007, 187, 937–943. [Google Scholar] [CrossRef]
- Noor, K.I.; Noor, M.A. Iterative methods with fourth-order convergence for nonlinear equations. Appl. Math. Comput. 2007, 189, 221–227. [Google Scholar] [CrossRef]
- Noor, M.A.; Mohyud-Din, S.T. An Iterative Method for Solving Helmholtz Equations. Arab. J. Math. Math. Sci. 2007, 1, 13–18. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Al-Said, E.; Waseem, M. Some New Iterative Methods for Nonlinear Equations. Math. Probl. Eng. 2010, 2010, 198943. [Google Scholar] [CrossRef]
- Deeba, E.Y.; Khuri, S.A. A Decomposition Method for Solving the Nonlinear Klein–Gordon Equation. J. Comput. Phys. 1996, 124, 442–448. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batiha, B. New Solution of the Sine-Gordon Equation by the Daftardar-Gejji and Jafari Method. Symmetry 2022, 14, 57. https://doi.org/10.3390/sym14010057
Batiha B. New Solution of the Sine-Gordon Equation by the Daftardar-Gejji and Jafari Method. Symmetry. 2022; 14(1):57. https://doi.org/10.3390/sym14010057
Chicago/Turabian StyleBatiha, Belal. 2022. "New Solution of the Sine-Gordon Equation by the Daftardar-Gejji and Jafari Method" Symmetry 14, no. 1: 57. https://doi.org/10.3390/sym14010057
APA StyleBatiha, B. (2022). New Solution of the Sine-Gordon Equation by the Daftardar-Gejji and Jafari Method. Symmetry, 14(1), 57. https://doi.org/10.3390/sym14010057