Next Article in Journal
Absorption of Light in Finite Semiconductor Nanowire Arrays and the Effect of Missing Nanowires
Previous Article in Journal
Stochastic Subgradient for Large-Scale Support Vector Machine Using the Generalized Pinball Loss Function
Previous Article in Special Issue
Applications of the q-Srivastava-Attiya Operator Involving a Certain Family of Bi-Univalent Functions Associated with the Horadam Polynomials
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some Results of New Subclasses for Bi-Univalent Functions Using Quasi-Subordination

by
Waggas Galib Atshan
1,*,†,
Ibtihal Abdul Ridha Rahman
1,† and
Alina Alb Lupaş
2,†
1
Department of Mathematics, University of Al-Qadisiyah, Diwaniyah 58001, Iraq
2
Department of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Symmetry 2021, 13(9), 1653; https://doi.org/10.3390/sym13091653
Submission received: 10 March 2021 / Revised: 26 March 2021 / Accepted: 1 April 2021 / Published: 8 September 2021
(This article belongs to the Special Issue Functional Equations and Analytic Inequalities)

Abstract

:
In this paper, we introduce new subclasses R Σ , b , c μ , α λ , δ , τ , Φ and K Σ , b , c μ , α λ , δ , η , Φ of bi-univalent functions in the open unit disk U by using quasi-subordination conditions and determine estimates of the coefficients a 2 and a 3 for functions of these subclasses. We discuss the improved results for the associated classes involving many of the new and well-known consequences. We notice that there is symmetry in the results obtained for the new subclasses R Σ , b , c μ , α λ , δ , τ , Φ and K Σ , b , c μ , α λ , δ , η , Φ , as there is a symmetry for the estimations of the coefficients a 2 and a 3 for all the subclasses defind in our this paper.

1. Introduction

Let H be the class of analytic functions f defined in the open unit disk U = z : z < 1 and normalized by conditions f 0 = 0 , f 0 = 1 . An analytic function f H has Taylor series expansion of the form:
f z = z + j = 2 a j z j , z U .
The well-known Koebe-One Quarter Theorem [1] states that the image of the open unit disk U under each univalent function in a disk with the radius 1 4 . Thus, every univalent function f has an inverse f 1 , such that
f 1 f z = z , z U ,
and
f 1 f w = w , w < r 0 f , r 0 f 1 4 .
Let Σ denote the class of all bi-univalent functions in U. Since f in Σ has the form (1), a computation shows that the inverse g = f 1 has the following expansion
g w = f 1 w = w a 2 w 2 + 2 a 2 2 a 3 w 3 5 a 2 2 5 a 2 a 3 + a 4 w 4 + , w U .
Let B be the class of all analytic and invertible univalent functions in the open unit disk, but the inverse function may not be defined on the entire disk U, for f in H . An analytic function f is called bi-univalent in U if both f and f 1 are univalent in U.
The class of bi-univalent functions was introduced by Lewin [2] and proved that a 2 1.51 for the function of the form (1). Subsequently, Brannan and Clunie [3] conjectured that a 2 2 . Later, Netanyahu, in [4], showed that max f Σ a 2 = 4 3 . Several authors studied classes of bi-univalent analytic functions and found estimates of the coefficients estimate problem for each of the following Taylor–MacLaurin coefficients a 2 and a 3 for functions in these classes ([5,6,7]).
For functions f , h H of the form (1), respectively,
h z = z + j = 2 b j z j , z U .
The convolution of the functions f and h denoted by f z h ( z ) is defined as
f z h ( z ) = z + j = 2 a j b j z j , z U .
Choi and Srivastava [8] found several interesting properties of Hurwitz–Lerch Zeta function ϕ ( z , s , a ) defined by
ϕ ( z , s , a ) : = j = 0 z j ( j + a ) s ,
a C \ 0 , 1 , 2 , , s C , R e s > 1 and z = 1 .
In [9] Srivastava-Attiya introduced the following operator D μ , b : H H ,
D μ , b z = 1 + b μ ϕ z , μ , b b μ ,
which has the following form
D μ , b f z = z + j = 2 1 + b j + b μ a j z j ,
b C \ 0 , 1 , 2 , , μ C , z U , f H .
For f H , Carlson and Shaffer [10] defined the following integral operator T α f z by
T α f z = z + j = 2 α j 1 c j 1 a j z j .
Define the convolution (or Hadamard product) of the operators D μ , b f z and T α f z ,
N α , c μ , b f ( z ) = D μ , b f z T α f z = z + j = 2 1 + b j + b μ α j 1 c j 1 a j z j ,
which can be written as
N α , c μ , b f ( z ) = z + j = 2 φ j , α a j z j ,
where φ j , α = 1 + b j + b μ α j 1 c j 1 .
In the year 1970, the concept of quasi-subordination was first mentioned in [11]. For two analytic functions g and f in U , we say that the function f is quasi-subordinate to g in U , if there are analytic functions ϕ and F , with ϕ z 1 , F 0 = 0 and F z < 1 , such that f z = ϕ z g F z , and denote this quasi-subordination by [12], as follows
f ( z ) q g ( z ) , z U .
Note that if ϕ z = 1 , then f z = g F z , hence f z g z in U ([13]). Furthermore, if F z = z , then f z = ϕ z g z and this case f is majorized by g , written as f z g z in U.
Ma and Minda [14], using the method of subordination of defined and studied classes S Φ and G Φ of starlike functions. See also [15,16].
S Φ = f H : z f ( z ) f ( z ) Φ z , z U ,
and
G Φ = f H : 1 + z f ( z ) f ( z ) Φ z , z U ,
where
ϕ ( z ) = K 0 + K 1 z + K 2 z 2 + , z U .
Now, consider
Φ z = 1 + B 1 z + B 2 z 2 + B 3 z 3 + , B 1 > 0 ,
an analytic and univalent function with a positive real part in U , symmetric with respect to the real axis and starlike with respect to Φ ( 0 ) = 1 and Φ ( 0 ) > 0 .
By S Σ Φ and G Σ Φ we denote the bi-starlike of Ma-Minda and bi-convex of the Ma–Minda type, respectively ([17,18]).
In [17,19] Brannan and Taha get initial coefficient bounds for subclasses of bi-univalent functions. Later, Srivastava et al. [20] introduced and investigated subclasses of bi-univalent functions and get bounds for the initial coefficients. Also, Ali et al. [21] get the coefficient bounds for bi-univalent Ma-Minda starlike and convex functions. Some more important results on coefficient inequalities can be found in [12,21,22,23].
Here, we discuss the improved results for the associated classes involving many of the new-known consequences.
We need the following Lemma to achieve the results.
Lemma 1
([24]). If p P , then p i 2 for each i, where P is the family of all analytic functions p, for which R e p z > 0 , z U , where
p z = 1 + p 1 z + p 2 z 2 + p 3 z 3 + , z U .

2. The Subclass R Σ , B , C μ , α λ , δ , τ , Φ

Definition 1.
A function f H is said to be in the class R Σ , b , c μ , α ( λ , δ , τ , Φ ) , 0 λ 1 , 0 δ 1 , and τ C \ 0 , if the following quasi-subordinations hold
1 τ z N α , c μ , b f z + z 2 N α , c μ , b f z 1 λ z + λ z N α , c μ , b f z + δ z N α , c μ , b f z 1 q Φ z 1 ,
1 τ w N α , c μ , b g w + w 2 N α , c μ , b g w 1 λ w + λ w N α , c μ , b g w + δ w N α , c μ , b g w 1 q Φ w 1 ,
where g is the inverse function of f and z , w U .
For special values of parameters λ , δ , τ , μ , we obtain new and well-known classes.
Remark 1.
For δ = 0 and τ C \ 0 , 0 λ 1 , 0 δ 1 , a function f Σ defined by (1) is said to be in the class R Σ , b , c μ , α ( λ , τ , Φ ) ,if the following quasi-subordination condition are satisfied
1 τ z N α , c μ , b f z + z 2 N α , c μ , b f z 1 λ z + λ z N α , c μ , b f z 1 q Φ z 1 ,
and
1 τ w N α , c μ , b g w + w 2 N α , c μ , b g w 1 λ w + λ w N α , c μ , b g w 1 q Φ w 1 ,
where g is the inverse function of f and z , w U .
Remark 2.
For μ = 0 , b = 0 , c = 0 , α = 0 , τ C \ 0 , a function f Σ defined by (1) is said to be in the class R Σ ( λ , δ , τ , Φ ) , if the following quasi-subordination conditions are satisfied
1 τ z f z + z 2 f z 1 λ z + λ z f z + δ z f z 1 q Φ z 1 ,
and
1 τ w g w + w 2 g w 1 λ w + λ w g w + δ w g w 1 q Φ w 1 ,
where g is the inverse function of f and z , w U .
Next, we find estimates for the coefficients a 2 and a 3 for the functions in class R Σ , b , c μ , α λ , δ , τ , Φ .
Theorem 1.
If f given by (1) belongs to the subclass R Σ , b , c μ , α λ , δ , τ , Φ , then
a 2 τ h 0 B 1 B 1 3 τ 3 λ + 6 δ h 0 B 1 2 φ 3 , α 4 λ τ 2 λ h 0 B 1 2 + 2 λ + δ 2 ( B 2 B 1 ) φ 2 , α 2 ,
and
a 3 τ h 0 + h 1 B 1 6 3 λ + 6 δ φ 3 , α + τ 2 B 1 2 h 0 2 4 2 λ + δ 2 φ 2 , α 2 , B 1 > 1 ,
where
φ 2 , α = 1 + b 2 + b μ α 2 1 c 2 1 , a n d φ 3 , α = 1 + b 3 + b μ α 3 1 c 3 1 .
Proof. 
Since f R Σ , b , c μ , α λ , δ , τ , Φ , then there exist analytic functions ϕ , F in U and ϕ , F : U U , with ϕ z 1 , such that ϕ 0 = F 0 = 0 and F z < 1 , satisfied
1 τ z N α , c μ , b f z + z 2 N α , c μ , b f z 1 λ z + λ z N α , c μ , b f z + δ z N α , c μ , b f z 1 = ϕ ( z ) Φ ( F ( z ) 1 ,
and
1 τ w N α , c μ , b g w + w 2 N α , c μ , b g w 1 λ w + λ w N α , c μ , b g w + δ w N α , c μ , b g w 1 = ϕ ( w ) Φ ( F ( w ) 1 ,
where g is the inverse function of f and z , w U .
Define the functions u and v by
u z = 1 + F ( z ) 1 F ( z ) = 1 + u 1 z + u 2 z 2 + u 3 z 3 ,
and
v w = 1 + ϕ ( w ) 1 ϕ ( w ) = 1 + v 1 w + v 2 w 2 + v 3 w 3 + ,
or equivalently,
F z = u z 1 u z + 1 = 1 2 [ u 1 z + u 2 u 1 2 2 z 2 + ,
and
ϕ w = v w 1 v w + 1 = 1 2 [ v 1 w + v 2 v 1 2 2 w 2 + .
Using (17) and (18) in (13) and (14), we obtain
1 τ z N α , c μ , b f z + z 2 N α , c μ , b f z 1 λ z + λ z N α , c μ , b f z + δ z N α , c μ , b f z 1
= ϕ ( z ) Φ u z 1 u z + 1 1 ,
and
1 τ w N α , c μ , b g w + w 2 N α , c μ , b g w 1 λ w + λ w N α , c μ , b g w + δ w N α , c μ , b g w 1
= ϕ w Φ v w 1 v w + 1 1 .
We can write
ϕ z Φ u z 1 u z + 1 = 1 2 h 0 B 1 u 1 z + 1 2 h 1 B 1 u 1 + 1 2 h 0 B 1 u 2 u 1 2 2 + 1 4 h 0 B 2 u 1 2 z 2 + ,
and
ϕ w Φ v w 1 v w + 1 = 1 2 h 0 B 1 v 1 w + 1 2 h 1 B 1 v 1 + 1 2 h 0 B 1 v 2 v 1 2 2 + 1 4 h 0 B 2 v 1 2 w 2 + .
Since
1 τ z N α , c μ , b f z + z 2 N α , c μ , b f z 1 λ z + λ z N α , c μ , b f z + δ z N α , c μ , b f z 1 =
1 τ 2 2 λ + δ φ 2 , α a 2 z + 3 3 λ + 6 δ φ 3 , α a 3 4 λ ( 2 λ ) φ 2 , α 2 a 2 2 z 2 + ,
and
1 τ w N α , c μ , b g w + w 2 N α , c μ , b g w 1 λ w + λ w N α , c μ , b g w + δ w N α , c μ , b g w 1 =
1 τ 2 2 λ + δ φ 2 , α a 2 w + 3 3 λ + 6 δ φ 3 , α 2 a 2 2 a 3 4 λ ( 2 λ ) φ 2 , α 2 a 2 2 w 2 + ,
putting (21) and (23) in (19) and putting (22) and (24) in (20) and equating coefficients in both sides, we get
2 τ 2 λ + δ φ 2 , α a 2 = 1 2 h 0 B 1 u 1 ,
1 τ 3 3 λ + 6 δ φ 3 , α a 3 4 λ 2 λ φ 2 , α 2 a 2 2 = 1 2 h 1 B 1 u 1 + 1 2 h 0 B 1 u 2 u 1 2 2 + 1 4 h 0 B 2 u 1 2 ,
and
2 τ 2 λ + δ φ 2 , α a 2 = 1 2 h 0 B 1 v 1 ,
1 τ 2 2 λ + δ φ 2 , α a 2 + 3 3 λ + 6 δ φ 3 , α 2 a 2 2 a 3 4 λ ( 2 λ ) φ 2 , α 2 a 2 2
= 1 2 h 1 B 1 v 1 + 1 2 h 0 B 1 v 2 v 1 2 2 + 1 4 h 0 B 2 v 1 2 .
From (25) and (27), we obtain
a 2 = τ h 0 B 1 u 1 4 2 λ + δ φ 2 , α = τ h 0 B 1 v 1 4 2 λ + δ φ 2 , α .
It follows that
u 1 = v 1 ,
and
32 2 λ + δ 2 φ 2 , α 2 a 2 2 = τ 2 h 0 2 B 1 2 ( u 1 2 + v 1 2 ) .
Adding (26) and (28), by using (30) and (31), we have
8 3 τ h 0 B 1 2 3 λ + 6 δ φ 3 , α a 2 2 4 λ τ h 0 B 1 2 2 λ φ 2 , α 2 a 2 2 =
2 τ 2 h 0 2 B 1 3 ( u 2 + v 2 ) + 32 2 λ + δ 2 B 2 B 1 φ 2 , α 2 a 2 2 ,
which implies
a 2 2 = 2 τ 2 h 0 2 B 1 3 ( u 2 + v 2 ) 8 3 τ 3 λ + 6 δ h 0 B 1 2 φ 3 , α 4 λ τ 2 λ h 0 B 1 2 + 2 λ + δ 2 ( B 2 B 1 ) φ 2 , α 2 .
Applying Lemma 1 in (33), we get (11).
Now, in order to find the bound of the coefficient a 3 , by subtracting (26) and (28) we get,
4 τ 6 3 λ + 6 δ φ 3 , α a 3 6 3 λ + 6 δ φ 3 , α a 2 2 = 2 h 1 B 1 u 1 + h 0 B 1 ( u 2 v 2 ) .
By substituting (28) from (26), further computation using (30) and (31), we obtain
a 3 = 2 τ h 1 B 1 u 1 24 3 λ + 6 δ φ 3 , α + τ h 0 B 1 ( u 2 v 2 ) 24 3 λ + 6 δ φ 3 , α + τ 2 h 0 2 B 1 2 ( u 1 2 + v 1 2 ) 32 2 λ + δ 2 φ 2 , α 2 .
Applying Lemma 1 in (35), we get (12). The proof is complete. □
Taking δ = 0 in Theorem 1, we obtain the following corollary.
Corollary 1.
Let f given by (1) belongs to the class R Σ , b , c μ , α λ , 0 , τ , Φ . Then
a 2 τ h 0 B 1 B 1 3 τ 3 λ h 0 B 1 2 φ 3 , α 4 2 λ λ τ h 0 B 1 2 + 2 λ ( B 2 B 1 ) φ 2 , α 2 ,
and
a 3 τ h 0 + h 1 B 1 6 3 λ φ 3 , α + τ 2 B 1 2 h 0 2 4 2 λ 2 φ 2 , α 2 , B 1 > 1 .
For λ = 1 , we obtain
Corollary 2.
Let f, given by (1,) belong to the class R Σ , b , c μ , α 1 , δ , τ , Φ , and τ C \ 0 . Then
a 2 τ h 0 B 1 B 1 6 1 + 3 δ τ h 0 B 1 2 φ 3 , α 4 τ h 0 B 1 2 + 4 1 + δ 2 ( B 2 B 1 ) φ 2 , α 2 ,
and
a 3 τ h 0 + h 1 B 1 12 1 + 3 δ φ 3 , α + τ 2 B 1 2 h 0 2 4 1 + δ 2 φ 2 , α 2 , B 1 > 1 .
Corollary 3.
Let f given by (1) belong to the class R Σ λ , δ , τ , Φ , and τ C \ 0 , where 0 λ 1 , 0 δ 1 . Then
a 2 τ h 0 B 1 B 1 3 τ 3 λ + 6 δ h 0 B 1 2 4 λ τ 2 λ h 0 B 1 2 4 2 λ + δ 2 ( B 2 B 1 ) ,
and
a 3 τ h 0 + h 1 B 1 6 3 λ + 6 δ + τ 2 B 1 2 h 0 2 4 2 λ + δ 2 , B 1 > 1 .

3. The Subclass K Σ , b , c μ , α λ , δ , η , Φ

Definition 2.
A functions f H is said to be in the class K Σ , b , c μ , α ( λ , δ , η , Φ ) , η 1 , λ 0 , and δ C \ 0 , if it satisfies the following quasi-subordination
1 δ 1 η z N α , c μ , b f z N α , c μ , b f z + η N α , c μ , b f z + λ z N α , c μ , b f z 1 q Φ z 1 ,
and
1 δ 1 η w N α , c μ , b g w N α , c μ , b g w + η N α , c μ , b g w + λ w N α , c μ , b g w 1 q Φ w 1 ,
where g is the inverse function of f and z , w U .
For special values of parameters η , δ , λ , μ , we obtain new and well-known classes.
Remark 3.
For η = 1 and δ C \ 0 , λ 0 , a function f Σ defined in (1) is said to be in the class K Σ , b , c μ , α ( λ , δ , η , Φ ) , if the following quasi-subordination conditions are satisfied:
1 δ N α , c μ , b f z + λ z N α , c μ , b f z 1 q Φ z 1 ,
and
1 δ N α , c μ , b g w + λ w N α , c μ , b g w 1 q Φ w 1 ,
where g is the inverse function of f and z , w U .
Remark 4.
For μ = 0 , b = 0 , c = 0 , α = 0 and δ C \ 0 , η 1 , λ 0 , a function f Σ defined in (1) is said to be in the class K Σ ( λ , δ , η , Φ ) , if the following quasi-subordination conditions are satisfied:
1 δ 1 η z f z f z + η f z + λ z f z 1 q Φ z 1 ,
and
1 δ 1 η w g w g w + η g w + λ w g w 1 q Φ w 1 ,
where g is the inverse function of f and z , w U .
Remark 5.
For α = 0 and δ C \ 0 , η 1 , λ 0 , a function f Σ defined in (1) is said to be in the class K Σ , b , c μ , α ( λ , δ , η , Φ ) , if the following quasi-subordination conditions are satisfied:
1 δ 1 η z N α , c μ , b f z N α , c μ , b f z + η N α , c μ , b f z 1 q Φ z 1 ,
and
1 δ 1 η w N α , c μ , b g w N α , c μ , b g w + η N α , c μ , b g w 1 q Φ w 1 ,
where g is the inverse function of f and z , w U .
Next, we find estimates of the coefficients a 2 and a 3 for the functions in class K Σ , b , c μ , α ( λ , δ , η , Φ ) .
Theorem 2.
If f given by (1) belong to the subclass K Σ , b , c μ , α ( λ , δ , η , Φ ) , then
a 2 min δ h 0 B 1 1 + η + 2 λ φ 2 , α , δ h 0 B 1 + B 2 B 1 2 + η + 6 λ φ 3 , α 1 η φ 2 , α 2 ,
and
a 3 min δ ( h 1 B 1 + h 0 B 1 ) 2 2 + η + 6 λ φ 3 , α + δ h 0 B 1 + B 2 B 1 2 + η + 6 λ φ 3 , α 1 η φ 2 , α 2 ,
δ ( h 1 B 1 + h 0 B 1 ) 2 2 + η + 6 λ φ 3 , α + δ 2 h 0 2 B 1 2 1 + η + 2 λ 2 φ 2 , α 2 , B 1 > 1 .
Proof. 
If f K Σ , b , c μ , α ( λ , δ , η , Φ ) and g = f 1 , then there are analytic functions ϕ , F in U and ϕ , F : U U , with ϕ z 1 , such that ϕ 0 = F 0 = 0 and F z < 1 , satisfied
1 δ 1 η z f z f z + η f z + λ z f z 1 = ϕ ( z ) Φ ( F ( z ) 1 ,
and
1 δ 1 η w g w g w + η g w + λ w g w 1 = ϕ ( w ) Φ ( F ( w ) 1 .
Define the function u ( z ) and v ( w ) by (15) and (16) respectively.
Proceeding similarly as in Theorem 1, we obtain
1 δ 1 η z f z f z + η f z + λ z f z 1 = ϕ ( z ) Φ u z 1 u z + 1 1 ,
and
1 δ 1 η w g w g w + η g w + λ w g w 1 = ϕ ( w ) Φ v w 1 v w + 1 1 ,
since
1 δ 1 η z f z f z + η f z + λ z f z 1 =
1 δ 1 + η + 2 λ φ 2 , α a 2 z + 2 + η + 6 λ a 3 φ 3 , α z 2 1 η a 2 2 φ 2 , α 2 z 2 ,
and
1 δ 1 η w g w g w + η g w + λ w g w 1 =
1 δ 1 + η + 2 λ φ 2 , α a 2 w + 2 + η + 6 λ α 2 a 2 2 a 3 φ 3 , α w 2 1 η a 2 2 φ 2 , α 2 w 2 .
Comparing the coefficients of (44) with (21) and (45) with (22), then we have
1 δ 1 + η + 2 λ φ 2 , α a 2 = 1 2 h 0 B 1 u 1 ,
1 δ 2 + η + 6 λ φ 3 , α a 3 1 η φ 2 , α 2 a 2 2 = 1 2 h 1 B 1 u 1 + 1 2 h 0 B 1 u 2 u 1 2 2 + 1 4 h 0 B 2 u 1 2 ,
and
1 δ 1 + η + 2 λ φ 2 , α a 2 = 1 2 h 0 B 1 v 1 ,
1 δ 2 + η + 6 λ 2 a 2 2 a 3 φ 3 , α 1 η φ 2 , α 2 a 2 2 = 1 2 h 1 B 1 v 1 + 1 2 h 0 B 1 v 2 v 1 2 2 + 1 4 h 0 B 2 v 1 2 .
From (46) and (48), we find that
u 1 = v 1 ,
and
8 1 + η + 2 λ 2 φ 2 , α 2 a 2 2 = δ 2 h 0 2 B 1 2 u 1 2 + v 1 2 .
Adding (47) and (49), we obtain
8 δ 2 + η + 6 λ φ 3 , α 1 η φ 2 , α 2 a 2 2 = 2 h 0 B 1 u 2 + v 2 + h 0 B 2 B 1 u 1 2 + v 1 2 ,
which implies that
a 2 2 = 2 δ h 0 B 1 u 2 + v 2 + δ h 0 B 2 B 1 u 1 2 + v 1 2 8 2 + η + 6 λ φ 3 , α 1 η φ 2 , α 2 .
Applying Lemma 1 for the coefficients u 1 , u 2 , v 1 and v 2 , it follows from (51) and (53),
a 2 δ h 0 B 1 1 + η + 2 λ φ 2 , α , and a 2 δ h 0 B 1 + B 2 B 1 2 + η + 6 λ φ 3 , α 1 η φ 2 , α 2 ,
which yields the desired estimate on a 2 as asserted in (38).
Now, to find the bound of the coefficient a 3 , by subtracting relations (47) and (49), we get
8 δ 2 + η + 6 λ a 3 a 2 2 φ 3 , α = 2 h 0 B 1 u 1 + h 0 B 1 u 2 v 2 .
Upon substituting the value of a 2 2 from (51), (53) and putting (54) respectively, it follows that
a 3 δ 2 h 0 B 1 u 1 + h 0 B 1 u 2 v 2 8 2 + η + 6 λ φ 3 , α + δ 2 h 0 2 B 1 2 u 1 2 + v 1 2 8 1 + η + 2 λ 2 φ 2 , α 2 ,
and
a 3 δ 2 h 0 B 1 u 1 + h 0 B 1 u 2 v 2 8 2 + η + 6 λ φ 3 , α + 2 δ h 0 B 1 u 2 + v 2 + δ h 0 B 2 B 1 u 1 2 + v 1 2 8 2 + η + 6 λ φ 3 , α 1 η φ 2 , α 2 .
Applying Lemma 1 for the coefficients u 1 , u 2 , v 1 and v 2 , we get
a 3 δ ( h 1 B 1 + h 0 B 1 ) 2 2 + η + 6 λ φ 3 , α + δ 2 h 0 2 B 1 2 1 + η + 2 λ 2 φ 2 , α 2 ,
and
a 3 δ ( h 1 B 1 + h 0 B 1 ) 2 2 + η + 6 λ φ 3 , α + δ h 0 B 1 + B 2 B 1 2 + η + 6 λ φ 3 , α 1 η φ 2 , α 2 ,
which yields the desired estimate on a 3 , as asserted in (39).
This completes the proof of Theorem 2. □
Taking η = 1 in Theorem 2 we obtain the following corollary.
Corollary 4.
Let f given by (1) belongs to the class K Σ , b , c μ , α ( λ , δ , 1 , Φ ) . Then
a 2 min δ h 0 B 1 2 1 + λ φ 2 , α , δ h 0 B 1 + B 2 B 1 3 1 + 2 λ φ 3 , α ,
and
a 3 min δ ( h 1 B 1 + h 0 B 1 ) 6 1 + 2 λ φ 3 , α + δ h 0 B 1 + B 2 B 1 3 1 + 2 λ φ 3 , α , δ ( h 1 B + h 0 B 1 ) 6 1 + 2 λ φ 3 , α + δ 2 h 0 2 B 1 2 2 + 2 α 2 φ 2 , α 2 ,
B 1 > 1 .
Corollary 5.
Let f given by (1) belongs to the class K Σ ( λ , δ , η , Φ ) , where δ C \ 0 , η 1 , λ 0 . Then
a 2 min δ h 0 B 1 1 + η + 2 λ , δ h 0 B 1 + B 2 B 1 2 + η + 6 λ 1 η ,
and
a 3 min δ ( h 1 B 1 + h 0 B 1 ) 2 2 + η + 6 λ + δ h 0 B 1 + B 2 B 1 2 + η + 6 λ 1 η , δ ( h 1 B 1 + h 0 B 1 ) 2 2 + η + 6 λ α + δ 2 h 0 2 B 1 2 1 + η + 2 λ 2 ,
B 1 > 1 .
Corollary 6.
Let f given by (1) belongs to the class K Σ , b , c μ , α ( 0 , δ , η , Φ ) . Then
a 2 min δ h 0 B 1 1 + η φ 2 , α , δ h 0 B 1 + B 2 B 1 2 + η φ 3 , α 1 η φ 2 , α 2 ,
and
a 3 min δ ( h 1 B 1 + h 0 B 1 ) 2 2 + η φ 3 , α + δ h 0 B 1 + B 2 B 1 2 + η φ 3 , α 1 η φ 2 , α 2 ,
δ ( h 1 B 1 + h 0 B 1 ) 2 2 + η φ 3 , α + δ 2 h 0 2 B 1 2 1 + η 2 φ 2 , α 2 , B 1 > 1 .

4. Discussion

We introduce new subclasses R Σ , b , c μ , α λ , δ , τ , Φ and K Σ ( λ , δ , η , Φ ) of bi-univalent functions in the open unit disk U by using quasi-subordination conditions and determine estimates of the coefficients a 2 and a 3 for functions of these subclasses. We obtained two new theorems with some new special cases for our new subclasses, and these results are different from the previous results for the other authors. Additionally, we discuss the improved results for the associated classes involving many of the new and well-known consequences. The results contained in the paper could inspire ideas for continuing the study, and we opened some windows for authors to generalize our new subclasses to obtain some new results in bi-univalent function theory.

Author Contributions

Conceptualization, methodology, software, validation, formal analysis, resources, by A.A.L., W.G.A. and I.A.R.R. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Duren, P.L. Univalent Functions. Grundlehren der Mathematischen Wissenschaften; Band 259; Springer: Berlin, Germany, 1983. [Google Scholar]
  2. Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
  3. Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis. In Proceedings of the NATO Advanced Study Institute, University of Durham, Durham, UK, 1–20 July 1979; Academic Press: New York, NY, USA; London, UK, 1980. [Google Scholar]
  4. Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Arch. Rational Mech. Anal. 1969, 32, 100–112. [Google Scholar]
  5. Al-Ameedee, S.A.; Atshan, W.G.; Al-Maamori, F.A. Coefficients estimates of bi-univalent functions defined by new subclass function. J. Phys. Conf. Ser. 2020, 1530, 012105. [Google Scholar] [CrossRef]
  6. Al-Ameedee, S.A.; Atshan, W.G.; Al-Maamori, F.A. Second Hankel determinant for certain subclasses of bi- univalent functions. J. Phys. Conf. Ser. 2020, 1664, 012044. [Google Scholar] [CrossRef]
  7. Atshan, W.G.; Badawi, E.I. Results on coefficients estimates for subclasses of analytic and bi-univalent functions. J. Phys. Conf. Ser. 2019, 1294, 033025. [Google Scholar]
  8. Choi, J.; Srivastava, H.M. Certain Families of Series Associated with the Hurwitz-Lerch Zeta Function. Appl. Math. Comput. 2005, 170, 399–409. [Google Scholar] [CrossRef]
  9. Srivastava, H.M.; Attiya, A.A. An Integral Operator Associated with the Hurwitz-Lerch Zeta Function and Differential Subordination. Integral Transform. Spec. Funct. 2007, 18, 207–216. [Google Scholar] [CrossRef]
  10. Carlson, B.C.; Shaffer, D.B. Starlike and prestarlike hypergeometric functions. SIAM J. Math. Anal. 1984, 15, 737–746. [Google Scholar] [CrossRef]
  11. Robertson, M.S. Quasi-subordination and coefficient conjecture. Bull. Am. Math. Soc. 1970, 76, 1–9. [Google Scholar] [CrossRef] [Green Version]
  12. Kanas, S.; Darwish, H.E. Fekete-Szego problem for starlike and convex functions of complex order. Appl. Math. Lett. 2010, 23, 777–782. [Google Scholar] [CrossRef] [Green Version]
  13. Mohd, M.H.; Darus, M. Fekete Szego problems for Quasi-subordination classes. Abst. Appl. Anal. 2012, 2012, 192956. [Google Scholar]
  14. Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; pp. 157–169. [Google Scholar]
  15. Atshan, W.G.; Battor, A.H.; Abass, A.F. On third-order differential subordination results for univalent analytic functions involving an operator. J. Phys. Conf. Ser. 2020, 1664, 012041. [Google Scholar]
  16. Atshan, W.G.; Hadi, R.A. Some differential subordination and superordination results of p-valent functions defined by differential operator. J. Phys. Conf. Ser. 2020, 1664, 012043. [Google Scholar]
  17. Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Studia Univ. Babeş-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
  18. Taha, T.S. Topics in Univalent Function Theory. Ph.D. Thesis, University of London, London, UK, 1981. [Google Scholar]
  19. Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. In Mathematical Analysis and Its Applications; Mazhar, S.M., Hamoui, A., Faour, N.S., Eds.; KFAS Proceedings Series; Pergamon Press, Elsevier Science Limited: Oxford, UK, 1988; Volume 3, pp. 53–60, see also Studia Univ. Babe-Bolyai Math. 31(2) (1986) 70–77. [Google Scholar]
  20. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
  21. Ali, R.; Ravichandran, V.; Seenivasgan, S. Coefficient bounds for p-valent functions. Appl. Math. Comput 2007, 187, 35–46. [Google Scholar] [CrossRef]
  22. Atshan, W.G.; Yalcin, S.; Hadi, R.A. Coefficients estimates for special subclasses of k-fold symmetric bi-univalent functions. Math. Appl. 2020, 9, 83–90. [Google Scholar] [CrossRef]
  23. Yalcin, S.; Atshan, W.G.; Hassan, H.Z. Coefficients assessment for certain subclasses of bi-univalent functions related with Quasi-subordination. Publ. Institut Math. 2020, 108, 155–162. [Google Scholar] [CrossRef]
  24. Pommerenke, C. Univalent Functions; Vandenhoeck & Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Atshan, W.G.; Rahman, I.A.R.; Lupaş, A.A. Some Results of New Subclasses for Bi-Univalent Functions Using Quasi-Subordination. Symmetry 2021, 13, 1653. https://doi.org/10.3390/sym13091653

AMA Style

Atshan WG, Rahman IAR, Lupaş AA. Some Results of New Subclasses for Bi-Univalent Functions Using Quasi-Subordination. Symmetry. 2021; 13(9):1653. https://doi.org/10.3390/sym13091653

Chicago/Turabian Style

Atshan, Waggas Galib, Ibtihal Abdul Ridha Rahman, and Alina Alb Lupaş. 2021. "Some Results of New Subclasses for Bi-Univalent Functions Using Quasi-Subordination" Symmetry 13, no. 9: 1653. https://doi.org/10.3390/sym13091653

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop