# Unified Equation of State for Neutron Stars Based on the Gogny Interaction

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Gogny Interactions Adapted for Astrophysical Calculations

## 3. Neutron Star Crust with Gogny Forces

#### 3.1. Variational Wigner-Kirkwood Method in Finite Nuclei

#### 3.2. Shell and Pairing Effects

#### 3.3. Outer Crust

#### 3.4. Inner Crust

#### 3.5. Core–Crust Transition

## 4. Global Properties of Neutron Stars Predicted by Gogny Forces

#### 4.1. The Tolman–Oppenheimer–Volkov Equations

#### 4.2. Moment of Inertia

#### 4.3. Tidal Deformability

## 5. Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Dechargé, J.; Gogny, D. Hartree-Fock-Bogoliubov calculations with the D1 effective interaction on spherical nuclei. Phys. Rev. C
**1980**, 21, 1568. [Google Scholar] [CrossRef] - Berger, J.-F.; Girod, M.; Gogny, D. Time-dependent quantum collective dynamics applied to nuclear fission. Comp. Phys. Comm.
**1991**, 63, 365. [Google Scholar] [CrossRef] - Hilaire, S.; Girod, M. AMEDEE database, International Conference on Nuclear Data for Science and Technology. Nucl. Struct. Decay Data
**2008**. [Google Scholar] [CrossRef] [Green Version] - Pillet, N.; Hilaire, S. Towards an extended Gogny force. Eur. Phys. J. A
**2017**, 53, 193. [Google Scholar] [CrossRef] - Chappert, F.; Girod, M.; Hilaire, S. Towards a new Gogny force parametrization: Impact of the neutron matter equation of state. Phys. Lett. B
**2008**, 668, 420. [Google Scholar] [CrossRef] - Goriely, S.; Hilaire, S.; Girod, M.; Péru, S. First Gogny-Hartree-Fock-Bogoliubov Nuclear Mass Model. Phys. Rev. Lett.
**2009**, 102, 242501. [Google Scholar] [CrossRef] - Audi, G.; Waspra, A.H.; Thibault, C. The AME2003 atomic mass evaluation (II). Tables, graphs and references. Nucl. Phys. A
**2003**, 729, 337. [Google Scholar] [CrossRef] - Friedman, B.; Pandharipande, V.R. Hot and cold, nuclear and neutron matter. Nucl. Phys. A
**1981**, 361, 502. [Google Scholar] [CrossRef] - Robledo, L.M. HFBaxial Computer Code. 2002; unpublsihed. [Google Scholar]
- Robledo, L.M.; Bertsch, G.F. Application of the gradient method to Hartree-Fock-Bogoliubov theory. Phys. Rev. C
**2011**, 84, 014312. [Google Scholar] [CrossRef] [Green Version] - Wang, M.; Audi, G.; Waspra, A.H.; Kondev, F.G.; MacCormick, M.; Xu, X.; Pfeifer, B. The AME2012 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C
**2012**, 36, 1603. [Google Scholar] [CrossRef] - Sellahewa, R.; Rios, A. Isovector properties of the Gogny interaction. Phys. Rev. C
**2014**, 90, 054327. [Google Scholar] [CrossRef] [Green Version] - Gonzalez-Boquera, C.; Centelles, M.; Viñas, X.; Rios, A. Higher-order symmetry energy and neutron star core-crust transition with Gogny forces. Phys. Rev. C
**2017**, 96, 065806. [Google Scholar] [CrossRef] [Green Version] - Demorest, P.B.; Pennucci, T.; Ramson, S.M.; Roberts, M.S.E.; Hessels, J.W.T. A two-solar mass neutron star measured using the Shapiro delay. Nature
**2010**, 467, 1081. [Google Scholar] [CrossRef] - Antoniadis, J.; Freire, P.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; Van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Driebe, T.; et al. A Massive Pulsar in a Compact Relativistic Binary. Science
**2013**, 340, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Fonseca, E.; Pennucci, T.T.; Ellis, J.A.; Stairs, I.H.; Nice, D.J.; Ransom, S.M. The NANOGrav nine-year data set: Mass and geometric measurements of binary millisecond pulsars. Astrophys. J.
**2016**, 832, 167. [Google Scholar] [CrossRef] - Arzoumanian, Z.; Brazier, A.; Burke-Spolaor, S.; Chamberlin, S.; Chatterjee, S. The NANOGrav 11-year data set: High precision timing of 45 millisecond pulsars. Astrophys. J. Suppl. Ser.
**2018**, 235, 37. [Google Scholar] [CrossRef] [Green Version] - Chappert, F.; Pillet, N.; Girod, M.; Berger, J.-F. Gogny force with a finite-range density dependence. Phys. Rev. C
**2015**, 91, 034312. [Google Scholar] [CrossRef] - Gonzalez-Boquera, C.; Centelles, M.; Viñas, X.; Robledo, L.M. New Gogny interaction suitable for astrophysical applications. Phys. Lett. B
**2018**, 779, 195. [Google Scholar] [CrossRef] - Gonzalez-Boquera, C. Neutron-rich matter in atomic nuclei and neutron stars. arXiv
**2019**, arXiv:2003.00490. [Google Scholar] - Sharma, B.K.; Centelles, M.; Viñas, X.; Baldo, M.; Burgio, G.F. Unified equation of state for neutron stars on a microscopic basis. Astron. Astrophys.
**2015**, A584, 103. [Google Scholar] [CrossRef] - Douchin, F.; Haensel, P. A unified equation of state of dense matter and neutron star structure. Astron. Astrophys.
**2001**, 380, 151. [Google Scholar] [CrossRef] [Green Version] - Pearson, J.M.; Chamel, N.; Potekhin, A.Y.; Fantina, A.F.; Ducoin, C.; Dutta, A.K.; Goriely, S. Unified equations of state for cold non-accreting neutron stars with Brussels-Montreal functionals–I. Role of symmetry energy. Mon. Not. R. Astron. Soc.
**2018**, 481, 2994. [Google Scholar] [CrossRef] - Perot, L.; Chamel, N.; Sourie, A. Role of the symmetry energy and the neutron-matter stiffness on the tidal deformability of a neutron star with unified equations of state. Phys. Rev. C
**2019**, 100, 035801. [Google Scholar] [CrossRef] [Green Version] - Danielewicz, P.; Lacey, R.; Lynch, W.G. Determination of the Equation of State of Dense Matter. Science
**2002**, 298, 1592. [Google Scholar] [CrossRef] [Green Version] - Danielewicz, P.; Lee, J. Symmetry energy II: Isobaric analog states. Nucl. Phys. A
**1992**, 922, 1. [Google Scholar] [CrossRef] [Green Version] - Zhang, Z.; Chen, K.-W. Electric dipole polarizability in
^{208}Pb as a probe of the symmetry energy and neutron matter around ρ_{0}/3. Phys. Rev. C**2015**, 92, 031301. [Google Scholar] [CrossRef] [Green Version] - Tsang, M.B.; Zhang, Y.; Danielewicz, P.; Famiano, M.; Li, Z.; Lynch, W.G.; Steiner, A.W. Constraints on the density dependence of the symmetry energy. Phys. Rev. Lett.
**2009**, 102, 122701. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Tsang, M.B.; Stone, J.R.; Camera, F.; Danielewicz, P.G.; olfi, S.; Hebeler, K.; Horowitz, C.J.; Lee, J.; Lynch, W.G.; Kohley, Z.; et al. Constraints on the symmetry energy and neutron skins from experiments and theory. Phys. Rev. C
**2012**, 86, 015803. [Google Scholar] [CrossRef] [Green Version] - Lattimer, J.M.; Lim, Y. Constraining the symmetry parameters of the nuclear interaction. Astrophys. J.
**2013**, 771, 51. [Google Scholar] [CrossRef] [Green Version] - Lattimer, J.M.; Prakash, M. The equation of state of hot, dense matter and neutron stars. Phys. Rep.
**2016**, 621, 127. [Google Scholar] [CrossRef] [Green Version] - Centelles, M.; Roca-Maza, X.; Viñas, X.; Warda, M. Nuclear Symmetry Energy Probed by Neutron Skin Thickness of Nuclei. Phys. Rev. Lett.
**2009**, 102, 122502. [Google Scholar] [CrossRef] [Green Version] - Roca-Maza, X.; Centelles, M.; Viñas, X.; Warda, M. Neutron skin of
^{208}Pb, Nuclear Symmetry Energy, and the Parity Radius Experiment. Phys. Rev. Lett.**2011**, 106, 252501. [Google Scholar] [CrossRef] [Green Version] - Viñas, X.; Centelles, M.; Roca-Maza, X.; Warda, M. Density dependence of the symmetry energy from neutron skin thickness in finite nuclei. Eur. Phys. J. A
**2014**, 50, 27. [Google Scholar] [CrossRef] [Green Version] - Agrawal, B.K.; De, J.N.; Samaddar, S.K. Determining the density content of symmetry energy and neutron skin: An empirical approach. Phys. Rev. Lett.
**2012**, 109, 262501. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Li, B.-A.; Han, X. Constraining the neutron-proton effective mass splitting using empirical constraints on the density dependence of nuclear symmetry energy around normal density. Phys. Lett. B
**2013**, 727, 276. [Google Scholar] [CrossRef] [Green Version] - Oertel, M.; Hempel, M.; Klähn, T.; Typel, S. Equations of state for supernovae and compact stars. Rev. Mod. Phys.
**2017**, 89, 015007. [Google Scholar] [CrossRef] - Birkhan, J.; Miorelli, M.; Bacca, S.; Bassauer, S.; Bertulani, C.A.; Hagen, G.; Matsubara, H.; von Neumann-Cosel, P.; Papenbrock, T.; Pietralla, N.; et al. Electric Dipole Polarizability of
^{48}Ca and implications for neutron stars. Phys. Rev. Lett.**2017**, 118, 252501. [Google Scholar] [CrossRef] [Green Version] - Holt, J.W.; Kaiser, N. Equation of state of nuclear and neutron matter at third order in perturbation theory from chiral effective field theory. Phys. Rev. C
**2017**, 95, 034326. [Google Scholar] [CrossRef] [Green Version] - Drischler, C.; Hebeler, K.; Schwenk, N. Chiral interactions up to next-to-next-to-next-to-leading order and nuclear saturation. Phys. Rev. Lett.
**2019**, 122, 042501. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Roca-Maza, X.; Viñas, X.; Centelles, M.; Agrawal, B.K.; Colò, G.; Paar, N.; Piekarewicz, J.; Vretenar, D. Neutron skin thickness from the measured electric dipole polarizability in
^{68}Ni,^{120}Sn, and^{208}Pb. Phys. Rev. C**2015**, 92, 064304. [Google Scholar] [CrossRef] [Green Version] - Hagen, G.; Ekström, A.; Forssén, C.; Jansen, G.R.; Nazarewicz, W.; Papenbrock, T.; Wendt, K.A.; Bacca, S.; Barnea, N.; Carlsson, B.; et al. Neutron and weak-charge distributions of the
^{48}Ca nucleus. Nat. Phys.**2015**, 12, 186. [Google Scholar] [CrossRef] - Viñas, X.; Gonzalez-Boquera, C.; Centelles, M.; Robledo, L.M.; Mondal, C. Gogny forces in the astrophysical context. Bulg. J. Phys.
**2018**, 37, 68. [Google Scholar] - Viñas, X.; Gonzalez-Boquera, C.; Centelles, M.; Mondal, C. The modified D1M interaction: New Gogny forces adapted for neutron star calculations. Acta Phys. Pol. B Proc. Suppl.
**2019**, 12, 705. [Google Scholar] [CrossRef] - Roca-Maza, X.; Brenna, M.; Agrawal, B.K.; Borington, P.F.; Colò, G.; Cao, L.G.; Paar, N.; Vretenar, D. Giant quadrupole resonances in
^{208}Pb, the nuclear symmetry energy, and the neutron skin thickness. Phys. Rev. C**2013**, 87, 034301. [Google Scholar] [CrossRef] [Green Version] - Agrawal, B.K.; Shlomo, S.; Au, V.K. Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach. Phys. Rev. C
**2005**, 72, 014310. [Google Scholar] [CrossRef] [Green Version] - Piekarewicz, J. Pygmy resonances and neutron skins. Phys. Rev. C
**2011**, 83, 034319. [Google Scholar] [CrossRef] - Fattoyev, F.J.; Piekarewicz, J. Has a thick neutron skin in
^{208}Pb been ruled out? Phys. Rev. Lett.**2013**, 111, 162501. [Google Scholar] [CrossRef] [Green Version] - Horowitz, C.J.; Piekarewicz, J. Neutron star structure and the neutron radius of
^{208}Pb. Phys. Rev. Lett.**2001**, 86, 5647. [Google Scholar] [CrossRef] [Green Version] - Hellemans, V.; Pastore, A.; Duguet, T.; Bennaceur, K.; Davesne, D.; Meyer, J.; Bender, M.; Heenen, P.-H. Spurious finite-size instabilities in nuclear energy density functionals. Phys. Rev. C
**2013**, 88, 064323. [Google Scholar] [CrossRef] - Martini, M.; De Pace, A.; Bennaceur, K. Spurious finite-size instabilities with Gogny-type interactions. Eur. Phys. J. A
**2019**, 55, 150. [Google Scholar] [CrossRef] - Gonzalez-Boquera, C.; Centelles, M.; Viñas, X.; Robledo, L.M. Finite-size instabilities in finite-range forces. Phys. Rev. C
**2021**, 103, 064314. [Google Scholar] [CrossRef] - Mondal, C.; Viñas, X.; Centelles, M.; De, J.N. Structure and composition of the inner crust of neutron stars from Gogny interactions. Phys. Rev. C
**2020**, 102, 015802. [Google Scholar] [CrossRef] - Haensel, P.; Potekhin, A.Y.; Yakovlev, D.G. Neutron Stars 1: Equation of State and Structure; Springer-Verlag: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Chamel, N.; Haensel, P. Physics of neutron star crusts. Liv. Rev. Relat.
**2008**, 11, 10. [Google Scholar] [CrossRef] [Green Version] - Grill, F.; Providência, C.; Avancini, S.S. Neutron star inner crust and symmetry energy. Phys. Rev. C
**2012**, 85, 055808. [Google Scholar] [CrossRef] [Green Version] - Avancini, S.S.; Bertolino, B.P. Cold pasta phase in the extended Thomas-Fermi approximation. Int. J. Mod. Phys. E
**2015**, 24, 1550078. [Google Scholar] [CrossRef] - Newton, W.G.; Gearheart, M.; Li, B.-A. A survey of the parameter space of the compressible liquid drop model as applied to the neutron star inner crust. Astrophys. J. Suppl. Ser.
**2012**, 204, 9. [Google Scholar] [CrossRef] [Green Version] - Freiburghaus, C.; Rosswog, S.; Thielemann, F.K. r-process in neutron star mergers. Astrophys. J.
**1999**, 525, L121. [Google Scholar] [CrossRef] - Goriely, S.; Demetriou, P.; Janka, H.-T.; Pearson, J.M.; Samyn, M. The r-process nucleosynthesis: A continued challenge for nuclear physics and astrophysics. Nucl. Phys. A
**2005**, 758, 587. [Google Scholar] [CrossRef] [Green Version] - Baiotti, L.; Rezzolla, L. Binary neutron star mergers: A review of Einstein’s richest laboratory. Rep. Prog. Phys.
**2017**, 80, 096901. [Google Scholar] [CrossRef] [PubMed] [Green Version] - von Weizsäcker, C.F. Zur theorie der kernmassen. Z. Phys.
**1935**, 96, 431. [Google Scholar] [CrossRef] - Bethe, H.A.; Bacher, R.F. Nuclear Physics A. Stationary states of nuclei. Rev. Mod. Phys.
**1936**, 8, 82. [Google Scholar] [CrossRef] [Green Version] - Strutinsky, V.M. Shell effects in nuclear masses and deformation energies. Nucl. Phys. A
**1967**, 95, 420. [Google Scholar] [CrossRef] - Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev.
**1932**, 40, 749. [Google Scholar] [CrossRef] - Kirkwood, J.G. Quantum statistics of almost classical assemblies. Phys. Rev.
**1933**, 44, 31. [Google Scholar] [CrossRef] - Ring, P.; Schuck, P. The Nuclear Many-Body Problem; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Schuck, P.; Viñas, X. A variational Wigner-Kirkwood theory of finite nuclei. Phys. Lett. B
**1993**, 302, 1. [Google Scholar] [CrossRef] - Brack, M.; Bhaduri, P.K. Semiclassical Physics; Adisson-Wesley: London, UK, 1997. [Google Scholar]
- Centelles, M.; Viñas, X.; Durand, M.; Schuck, P.; Von-Eiff, D. Variational Wigner-Kirkwood ℏ expansion. Ann. Phys.
**1998**, 266, 207. [Google Scholar] [CrossRef] - Centelles, M.; Schuck, P.; Viñas, X. Thomas-Fermi theory for atomic nuclei revisited. Ann. Phys.
**2007**, 322, 363. [Google Scholar] [CrossRef] [Green Version] - Soubbotin, V.B.; Viñas, X. Extended Thomas-Fermi approximation to the one-body density matrix. Nucl. Phys. A
**2000**, 665, 291. [Google Scholar] [CrossRef] [Green Version] - Bhagwat, A.; Centelles, M.; Viñas, X.; Schuck, P. Woods-Saxon type of mean-field potentials with effective mass derived from the D1S Gogny force. Phys. Rev. C
**2021**, 103, 024320. [Google Scholar] [CrossRef] - Centelles, M.; Pi, M.; Viñas, X.; Garcias, F.; Barranco, M. Self-consistent extended Thomas-Fermi calculations in nuclei. Nucl. Phys. A
**1990**, 510, 397. [Google Scholar] [CrossRef] - Chu, Y.H.; Jennings, B.K.; Brack, M. Nuclear binding energies and liquid drop parameters in the Extended. Thomas-Fermi approximation Phys. Lett. B
**1977**, 68, 407. [Google Scholar] - Pearson, J.M.; Chamel, N.; Goriely, S.; Ducoin, C. Inner crust of neutron stars with mass-fitted Skyrme functionals. Phys. Rev. C
**2012**, 85, 065803. [Google Scholar] [CrossRef] [Green Version] - Del Estal, M.; Centelles, M.; Viñas, X.; Patra, S.K. Pairing properties in relativistic mean field models obtained from effective field theory. Phys. Rev. C
**2001**, 63, 044321. [Google Scholar] [CrossRef] [Green Version] - Wang, M.; Audi, G.; Kondev, F.G.; Huang, W.J.; Naimi, S.; Xu, X. The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C
**2017**, 41, 030003. [Google Scholar] [CrossRef] - Welker, A.; Althubiti, N.A.S.; Atanasov, D.; Blaum, K.; Cocolios, T.E.; Herfurth, F.; Kreim, S.; Lunney, D.; Manea, V.; Mougeot, M.; et al. Binding energy of
^{79}Cu: Probing the structure of the doubly magic^{78}Ni from only one proton away. Phys. Rev. Lett.**2017**, 119, 192502. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Pearson, J.M.; Goriely, S.; Chamel, N. Properties of the outer crust of neutron stars from Hartree-Fock-Bogoliubov mass models. Phys. Rev. C
**2011**, 83, 065810. [Google Scholar] [CrossRef] - Baym, G.; Pethick, C.; Sutherland, P. The ground state of matter at high densities: Equation of state and stellar models. Astrophys. J.
**1971**, 170, 299. [Google Scholar] [CrossRef] - Roca-Maza, X.; Piekarewicz, J. Impact of the symmetry energy on the outer crust of non accreting neutron stars. Phys. Rev. C
**2008**, 78, 025807. [Google Scholar] [CrossRef] [Green Version] - Chamel, N. Analytical determination of the structure of the outer crust of a cold nonaccreted neutron star. Phys. Rev. C
**2020**, 101, 032801. [Google Scholar] [CrossRef] [Green Version] - Pearson, J.M.; Chamel, N.; Pastore, A.; Goriely, S. Role of proton pairing in a semimicroscopic treatment of the inner crust of neutron stars. Phys. Rev. C
**2015**, 91, 018801. [Google Scholar] [CrossRef] - Shelley, M.; Pastore, A. Comparison between the Thomas-Fermi and Hartree-Fock-Bogolibov Methods in the Inner Crust of a Neutron Star: The role of Pairing Correlations. Universe
**2020**, 6, 206. [Google Scholar] [CrossRef] - Shelley, M.; Pastore, A. Systematic analysis of the inner crust composition using the extended Thomas-Fermi approximation with pairing correlations. Phys. Rev. C
**2021**, 103, 035807. [Google Scholar] [CrossRef] - Gonzalez-Boquera, C.; Centelles, M.; Viñas, X.; Routray, T.R. Core-crust transition in neutron stars with finite-range interactions: The dynamical method. Phys. Rev. C
**2019**, 100, 015806. [Google Scholar] [CrossRef] [Green Version] - Xu, J.; Chen, L.-W.; Li, B.-A.; Ma, H.-R. Nuclear constraints on properties of neutron star crusts. Astrophys. J.
**2009**, 697, 1549. [Google Scholar] [CrossRef] - Zhang, N.-B.; Li, B.-A. Constraints on the muon fraction and density profile in neutron stars. Astrophys. J.
**2020**, 893, 61. [Google Scholar] [CrossRef] [Green Version] - Klähn, T.; Blaschke, D.; Typel, S.; van Dalen, E.N.E.; Faessler, A.; Fuchs, C.; Gaitanos, T.; Grigorian, H.; Ho, A.; Kolomeitsev, E.E.; et al. Constraints on the high-density nuclear equation of state from the phenomenology of compact stars and heavy-ion collisions. Phys. Rev. C
**2006**, 74, 035802. [Google Scholar] [CrossRef] [Green Version] - Shapiro, S.L.; Teukolsky, S.A. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects; John Wiley & Sons: Hoboken, NJ, USA, 1983. [Google Scholar]
- Nättilä, J.; Steiner, A.W.; Kajava, J.J.E.; Suleimanov, V.F.; Poutanen, J. Equation of state constraints for the cold dense matter inside neutron stars using the cooling tail method. Astron. Astrophys.
**2016**, 591, A25. [Google Scholar] [CrossRef] [Green Version] - Lattimer, J.M.; Steiner, A.W. Constraints on the symmetry energy using the mass-radius relation of neutron stars. Eur. Phys. J. A
**2014**, 50, 40. [Google Scholar] [CrossRef] [Green Version] - Abbott, B.; Jawahar, S.; Lockerbie, N.; Tokmakov, K. LIGO Scientific Collaboration and Virgo Collaboration. GW170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett.
**2018**, 121, 161101. [Google Scholar] [CrossRef] [Green Version] - Riley, T.E.; Watts, A.L.; Bogdanov, S.; Ray, P.S.; Ludlam, R.M.; Guillot, S.; Arzoumanian, Z.; Baker, C.L.; Bilous, A.V.; Chakrabarty, D.; et al. A NICER view of PSR J0030+0451: Millisecond pulsar parameter estimation. Astrophys. J. Lett.
**2019**, 887, L21. [Google Scholar] [CrossRef] [Green Version] - Riley, T.E.; Watts, A.L.; Ray, P.S.; Bogdanov, S.; Guillot, S.; Morsink, S.M.; Bilous, A.V.; Arzoumanian, Z.; Choudhury, D.; Deneva, J.S.; et al. A NICER view of the massive pulsar PSR J0740+6620 informed by radio timing and XMM-Newton spectroscopy. arXiv
**2021**, arXiv:2105.06980. [Google Scholar] - Hartle, J.B. Slowly rotating relativistic stars. I. equations of structure. Astrophys. J.
**1967**, 150, 1005. [Google Scholar] [CrossRef] - Fattoyev, F.J.; Piekarewicz, J. Sensitivity of the moment of inertia of neutron stars to the equation of state of neutron-rich matter. Phys. Rev. C
**2010**, 82, 025810. [Google Scholar] [CrossRef] [Green Version] - Ravenhall, D.G.; Pethick, C.J. Neutron star moments of inertia. Astrophys. J.
**1994**, 424, 846. [Google Scholar] [CrossRef] - Lattimer, J.M.; Schutz, B.F. Constraining the equation of state with moment of inertia measurements. Astrophys. J.
**2005**, 629, 979. [Google Scholar] [CrossRef] [Green Version] - Link, B.; Epstein, R.I.; Lattimer, J.M. Pulsar constraints on neutron stars structure and equation of state. Phys. Rev. Lett.
**1999**, 83, 3362. [Google Scholar] [CrossRef] [Green Version] - Anderson, N.; Glampedakis, K.; Ho, W.C.G.; Espinoza, C.M. Pulsar glitches: The crust is not enough. Phys. Rev. Lett.
**2012**, 109, 241103. [Google Scholar] [CrossRef] [Green Version] - Chamel, N. Crustal Entrainment and Pulsar Glitches. Phys. Rev. Lett.
**2013**, 110, 011101. [Google Scholar] [CrossRef] - Landry, P.; Kumar, B. Constraints on the moment of inertia of PSR J037-3039A from GW170817. Astrophys. J.
**2018**, 868, L22. [Google Scholar] [CrossRef] [Green Version] - Breu, C.; Rezzolla, L. Maximum mass, moment of inertia and compactness of relativistic stars. Mon. Not. R. Astron. Soc.
**2016**, 459, 646. [Google Scholar] [CrossRef] [Green Version] - Flanagan, É.É.; Hinderer, T. Constraining neutron-star tidal Love numbers with gravitational-wave detectors. Phys. Rev. D
**2008**, 77, 021502. [Google Scholar] [CrossRef] [Green Version] - Hinderer, T. Tidal Love Numbers of Neutron Stars. Astrophys. J.
**2008**, 677, 1216. [Google Scholar] [CrossRef] - Hinderer, T.; Lackey, B.D.; Lang, R.N.; Read, J.S. Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral. Phys. Rev. D
**2010**, 81, 123016. [Google Scholar] [CrossRef] [Green Version] - Abbott, B.; Jawahar, S.; Lockerbie, N.; Tokmakov, K. LIGO scientific collaboration and Virgo collaboration. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett.
**2017**, 119, 161101. [Google Scholar] [CrossRef] [Green Version] - Abbott, B.; Jawahar, S.; Lockerbie, N.; Tokmakov, K. LIGO scientific collaboration and Virgo collaboration. Properties of the binary neutron star merger GW170817. Phys. Rev. X
**2019**, 9, 011001. [Google Scholar] - Lourenço, O.; Bhuyan, M.; Lenzi, C.H.; Dutra, M.; Gonzalez-Boquera, C.; Centelles, M.; Viñas, X. GW170817 constraints analyzed with Gogny forces and momentum-dependent interactions. Phys. Lett. B
**2020**, 803, 135306. [Google Scholar] [CrossRef]

**Figure 1.**Differences between the computed and the experimental binding energies of 620 even–even nuclei. Theoretical calculations are performed with the Gogny D1S (

**left panel**) and D1M (

**right panel**) interactions. The experimental values are taken from [11].

**Figure 2.**Equation of state (total pressure in logarithmic scale against baryon density) for neutron star matter computed with the D1M${}^{*}$, D1M, D1N and D1S Gogny interactions, with the BCPM energy density functional and with the SLy4 and BSk22 Skyrme forces. Constraints coming from collective flow in heavy-ion collisions are also included [25].

**Figure 3.**Symmetry energy, defined as Equation (7) with $k=1$ against the baryon density predicted by the D1M${}^{*}$, D1M, D1S and D1N Gogny interactions, the BCPM energy density functional and the SLy4 and BSk22 Skyrme forces. Some constraints coming from isobaric analog states (IAS) (green), from IAS plus neutron skins (IAS + n.skin) (yellow), electric dipole polarizability ${\alpha}_{D}$ in ${}^{208}$Pb (${\alpha}_{D}$ in ${}^{208}$Pb) (dashed red) and heavy-ion collisions (dashed blue) are also included [26,27,28].

**Figure 5.**Difference between the binding energies provided by the D1M${}^{*}$ and D1M force $\Delta B$ (in MeV) plotted as a function of the shifted neutron number N-${N}_{0}$ for isotopic chains covering the periodic table. The values of the atomic number Z and neutron reference number ${N}_{0}$ are given in each panel. The vertical scale covers from +3.5 MeV to −3.5 MeV, with long ticks every MeV and short ticks every half MeV. The horizontal line in each panel at $\Delta B$ = 0 is plotted guide the eye.

**Figure 6.**Neutron numbers N and proton numbers Z for the outer crust of NSs with the experimental masses from the AME2016 [78] tabulation plus the recently measured masses of ${}^{75-79}$Cu [79] aided by theoretical HFB calculations when experimental values are not available, using the D1M and D1M${}^{*}$ Gogny forces and the BCPM energy density functional.

**Figure 7.**Binding energy per nucleon excluding the bare nucleon mass as a function of proton numbers at different average densities ${\rho}_{av}$ of the inner crust calculated with D1M* Gogny interaction.

**Figure 8.**Neutron and proton density distribution inside the Wigner–Seitz cells obtained with variational Wigner–Kirkwood method at different average densities ${\rho}_{av}$ obtained with D1M* Gogny interaction.

**Figure 9.**Transition density (left panels) and transition pressure (right panels) against the slope of the symmetry energy computed for some Skyrme and Gogny interactions. The upper panels correspond to the values obtained using the thermodynamical method whereas the lower panels display the results extracted using the dynamical method.

**Figure 10.**

**Left**: Unified EoS computed with the the D1M and D1M* Gogny force and with the BCPM energy density functional.

**Right**: Particle fractions and the proton fraction corresponding to the onset of the direct Urca (DU) process (see text for details) as functions of the nucleonic density from the D1M and D1M* interactions.

**Figure 11.**Mass-radius relation obtained using the D1M${}^{*}$ and the D1M Gogny forces and the BCPM energy density functional. Constraints from the measurements of $M\approx 2{M}_{\odot}$ (yellow and grey) [14,15], from cooling tails of type-I X-ray bursts in three low-mass X-ray binaries and a Bayesian analysis (green) [92], from five quiescent low-mass X-ray binaries and five photospheric radius expansion X-ray bursters after a Bayesian analysis (blue) [93] and from a Bayesian analysis with the data from the GW170817 detection of gravitational waves from a binary NS merger (red) [94] are shown. Finally, the very recent constraints coming from the NICER mission are also included [95,96].

**Figure 12.**Crustal mass (

**left**), crustal radius (

**center**), and crustal fraction of the moment of inertia ($\Delta {I}_{\mathrm{crust}}/I$) (

**right**) obtained with the D1M${}^{*}$, D1M and BCPM interactions.

**Figure 13.**Left: Total moment of inertia against the total mass of neutron stars computed using the D1M${}^{*}$ and D1M Gogny forces and the BCPM energy density functional. The constraint proposed in [104] is also displayed. Right: Mass weighted tidal deformability (for symmetric binaries) against the chirp mass of binary neutron star systems obtained using the same interactions as in the left panel. The constraint for $\tilde{\Lambda}$ coming from the GW170817 event is also included [109,110].

**Table 1.**Parameters of the D1M, D1M${}^{*}$ and D1M${}^{**}$ Gogny forces. The coefficients ${W}_{i}$, ${B}_{i}$, ${H}_{i}$ and ${M}_{i}$ are given in MeV, ${\mu}_{i}$ in fm and ${t}_{3}$ in MeV fm${}^{4}$. The values of the other parameters of the modified interactions are the same as in the D1M force (namely, ${x}_{3}$ = 1, $\alpha $ = 1/3 and ${W}_{LS}=115.36$ MeV fm${}^{5}$).

D1M | ${W}_{i}$ | ${B}_{i}$ | ${H}_{i}$ | ${M}_{i}$ | ${\mu}_{i}$ |

i = 1 | −12,797.57 | 14,048.85 | −15,144.43 | 11,963.81 | 0.50 |

i = 2 | 490.95 | −752.27 | 675.12 | −693.57 | 1.00 |

${t}_{3}$ | ${x}_{3}$ | $\alpha $ | ${W}_{LS}$ | ||

1562.22 | 1 | 1/3 | 115.36 | ||

D1M${}^{*}$ | ${W}_{i}$ | ${B}_{i}$ | ${H}_{i}$ | ${M}_{i}$ | ${\mu}_{i}$ |

i = 1 | −17,242.0144 | 19,604.4056 | −20,699.9856 | 16,408.3344 | 0.50 |

i = 2 | 675.3860 | −982.8150 | 905.6650 | −878.0060 | 1.00 |

${t}_{3}$ | ${x}_{3}$ | $\alpha $ | ${W}_{LS}$ | ||

1561.22 | 1 | 1/3 | 115.36 | ||

D1M${}^{**}$ | ${W}_{i}$ | ${B}_{i}$ | ${H}_{i}$ | ${M}_{i}$ | ${\mu}_{i}$ |

i = 1 | −15,019.7922 | 16,826.6278 | −17,922.2078 | 14,186.1122 | 0.50 |

i = 2 | 583.1680 | −867.5425 | 790.3925 | −785.7880 | 1.00 |

${t}_{3}$ | ${x}_{3}$ | $\alpha $ | ${W}_{LS}$ | ||

1562.22 | 1 | 1/3 | 115.36 |

**Table 2.**Nuclear matter properties predicted by the D1M${}^{*}$, D1M${}^{**}$ and D1M Gogny interactions and by the BCPM energy density functional.

${\mathit{\rho}}_{0}$ | ${\mathit{E}}_{0}$ | ${\mathit{K}}_{0}$ | ${\mathit{m}}^{*}/\mathit{m}$ | ${\mathit{E}}_{\mathbf{sym}}\left({\mathit{\rho}}_{0}\right)$ | ${\mathit{E}}_{\mathbf{sym}}\left(0.1\right)$ | L | |
---|---|---|---|---|---|---|---|

(fm${}^{-3}$) | (MeV) | (MeV) | (MeV) | (MeV) | (MeV) | ||

D1M | 0.1647 | −16.02 | 224.98 | 0.746 | 28.55 | 23.80 | 24.83 |

D1M${}^{*}$ | 0.1650 | −16.06 | 225.38 | 0.746 | 30.25 | 23.82 | 43.18 |

D1M${}^{**}$ | 0.1647 | −16.02 | 224.98 | 0.746 | 29.37 | 23.80 | 33.91 |

BCPM | 0.1600 | −16.00 | 213.75 | 1.000 | 31.92 | 24.20 | 52.96 |

**Table 3.**Core–crust transition density ${\rho}_{t}$, pressure ${P}_{t}$ and and isospin asymmetry ${\delta}_{t}$ predicted by the D1M, D1M${}^{*}$ and D1M${}^{**}$ Gogny forces and the BCPM energy density functional.

${\mathit{\rho}}_{\mathit{t}}$ | ${\mathit{P}}_{\mathit{t}}$ | ${\mathit{\delta}}_{\mathit{t}}$ | |
---|---|---|---|

(fm${}^{-3}$) | (MeVfm${}^{-3}$) | ||

D1M | |||

${V}_{ther}$ | 0.1027 | 0.3390 | 0.9241 |

${V}_{dyn}$ | 0.0949 | 0.2839 | 0.9257 |

D1M${}^{*}$ | |||

${V}_{ther}$ | 0.0909 | 0.3301 | 0.9275 |

${V}_{dyn}$ | 0.0838 | 0.2702 | 0.9300 |

D1M${}^{**}$ | |||

${V}_{ther}$ | 0.0960 | 0.3368 | 0.9257 |

${V}_{dyn}$ | 0.0886 | 0.2786 | 0.9279 |

BCPM | |||

${V}_{ther}$ | 0.0889 | 0.5137 | 0.9339 |

${V}_{dyn}$ | 0.0816 | 0.4132 | 0.9382 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Viñas, X.; Gonzalez-Boquera, C.; Centelles, M.; Mondal, C.; Robledo, L.M.
Unified Equation of State for Neutron Stars Based on the Gogny Interaction. *Symmetry* **2021**, *13*, 1613.
https://doi.org/10.3390/sym13091613

**AMA Style**

Viñas X, Gonzalez-Boquera C, Centelles M, Mondal C, Robledo LM.
Unified Equation of State for Neutron Stars Based on the Gogny Interaction. *Symmetry*. 2021; 13(9):1613.
https://doi.org/10.3390/sym13091613

**Chicago/Turabian Style**

Viñas, Xavier, Claudia Gonzalez-Boquera, Mario Centelles, Chiranjib Mondal, and Luis M. Robledo.
2021. "Unified Equation of State for Neutron Stars Based on the Gogny Interaction" *Symmetry* 13, no. 9: 1613.
https://doi.org/10.3390/sym13091613