# Rotational Diode: Clockwise/Counterclockwise Asymmetry in Conducting and Mechanical Properties of Rotating (semi)Conductors

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Rotating Conductor in Magnetic-Field Background in Classical Electrodynamics

## 3. Rotation and Band Filling

## 4. Conductivity and Rotation

## 5. Mechanical Properties

## 6. Electric Charge in the Bulk

## 7. Conductivity

## 8. Angular Momentum

## 9. Summary

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Darling, T.W.; Rossi, F.; Opat, G.I.; Moorhead, G.F. The fall of charged particles under gravity: A study of experimental problems. Rev. Mod. Phys.
**1992**, 64, 237. [Google Scholar] [CrossRef] - Einstein, A.; de Haas, W.J. Experimental proof of the existence of Ampere’s molecular currents. Verh. Dtsch. Phys. Ges.
**1915**, 17, 152. [Google Scholar] - Barnett, S.J. Magnetization by rotation. Phys. Rev.
**1915**, 6, 239. [Google Scholar] [CrossRef] - Beams, J.W. Potentials on Rotor Surfaces. Phys. Rev. Lett.
**1968**, 21, 1093. [Google Scholar] [CrossRef] - Ahmedov, B.J.; Ermamatov, M.J. Rotational analog of the Hall effect: Coriolis contribution to electric current. Found. Phys. Lett.
**2002**, 15, 305. [Google Scholar] [CrossRef] - Lima, J.R.F.; Brandão, J.; Cunha, M.M.; Moraes, F. Effects of rotation in the energy spectrum of C60. Eur. Phys J. D
**2014**, 68, 94. [Google Scholar] [CrossRef] [Green Version] - Moorhead, G.F.; Opat, C.I. Electric fields in accelerating conductors: Measurement of the EMF in rotationally accelerating coils. Class. Quant. Grav.
**1996**, 13, 3129. [Google Scholar] [CrossRef] - Witteborn, F.C.; Fairbank, W.M. Experimental Comparison of the Gravitational Force on Freely Falling Electrons and Metallic Electrons. Phys. Rev. Lett.
**1967**, 19, 1049. [Google Scholar] [CrossRef] - Anandan, J. Relativistic thermoelectromagnetic gravitational effects in normal conductors and superconductors. Phys. Lett. A
**1984**, 105, 280. [Google Scholar] [CrossRef] - Hehl, F.W.; Obukhov, Y.N.; Rosenow, B. Is the Quantum Hall Effect Influenced by the Gravitational Field? Phys. Rev. Lett.
**2004**, 93, 096804. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Matsuo, M.; Ieda, J.; Maekawa, S. Mechanical generation of spin current. Front. Phys.
**2015**, 3, 54. [Google Scholar] [CrossRef] [Green Version] - Vozmediano, M.A.H.; Katsnelson, M.I.; Guinea, F. Gauge fields in graphene. Phys. Rep.
**2010**, 496, 109. [Google Scholar] [CrossRef] [Green Version] - Volovik, G.E. The Universe in a Helium Droplet; OUP: Oxford, UK, 2009. [Google Scholar]
- McDonald, K.T. Conducting Sphere That Rotates in a Uniform Magnetic Field. Available online: https://physics.princeton.edu/~kirkmcd/examples/rotatingsphere.pdf (accessed on 4 April 2021).
- Mason, M.; Weaver, W. The Electromagnetic Field; Sec. 48; Dover: New York, NY, USA, 1929. [Google Scholar]
- Ono, M.; Chudo, H.; Harii, K.; Okayasu, S.; Matsuo, M.; Ieda, J.; Takahashi, R.; Maekawa, S.; Saitoh, E. Barnett effect in paramagnetic states. Phys. Rev. B
**2015**, 92, 174424. [Google Scholar] [CrossRef] - Yu, P.Y.; Cardona, M. Fundamentals of Semiconductors Physics and Materials Properties; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Umansky, V.; Heiblum, M.; Levinson, Y.; Smet, J.; Nübler, J.; Dolev, M. MBE growth of ultra-low disorder 2DEG with mobility exceeding 35 × 10
^{6}cm^{2}/(V·s). J. Cryst. Growth**2009**, 311, 1658. [Google Scholar] [CrossRef] - McCluskey, M.D.; Haller, E.E. Dopants and Defects in Semiconductors; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]

**Figure 1.**(

**a**) Rotating conducting (metallic) cylinder in the magnetic field background. (

**b**) Qualitative behavior of the electric charge density inside the cylinder (with $w\ll R$).

**Figure 2.**The effect of rotation on the band filling of a semiconductor rotating with the angular velocity $\mathrm{\Omega}=\mathrm{\Omega}{\mathbf{e}}_{z}$ against the background of a magnetic field $\mathit{B}=B{\mathbf{e}}_{z}$ with $B>0$.

**Figure 4.**The conductivity $\sigma $ of the rotational diode vs. angular frequency $\mathrm{\Omega}$. The solid line corresponds to a p-type semiconductor at the threshold Fermi level, ${\epsilon}_{F}=0$. The dashed line gives the generic case ($0<{\epsilon}_{F}<{\epsilon}_{G}$) with a nonzero critical angular frequency ${\mathrm{\Omega}}_{c}$, Equation (13). The linear slopes are determined by the background magnetic field $B>0$, Equation (10).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chernodub, M.N.
Rotational Diode: Clockwise/Counterclockwise Asymmetry in Conducting and Mechanical Properties of Rotating (semi)Conductors. *Symmetry* **2021**, *13*, 1569.
https://doi.org/10.3390/sym13091569

**AMA Style**

Chernodub MN.
Rotational Diode: Clockwise/Counterclockwise Asymmetry in Conducting and Mechanical Properties of Rotating (semi)Conductors. *Symmetry*. 2021; 13(9):1569.
https://doi.org/10.3390/sym13091569

**Chicago/Turabian Style**

Chernodub, M. N.
2021. "Rotational Diode: Clockwise/Counterclockwise Asymmetry in Conducting and Mechanical Properties of Rotating (semi)Conductors" *Symmetry* 13, no. 9: 1569.
https://doi.org/10.3390/sym13091569