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Abstract: It is difficult to imagine an isolated classical object which possess different moments of
inertia when it is uniformly rotated about the same axis with the same angular frequency in opposite,
clockwise and counterclockwise, directions. We argue that due to quantum effects, certain (semi-)
conductors should exhibit asymmetry in their mechanical and conducting properties with respect to
the opposite rotations. We show that a cylinder made of a suitably chosen semiconductor, coated in a
metallic film and placed in the magnetic-field background, can serve as a “rotational diode”, which
conducts electricity only at a specific range of angular frequencies. The critical angular frequency and
the direction of rotation can be tuned with the magnetic field’s strength. Mechanically, the rotational
diode possesses different moments of inertia when rotated in clockwise and counterclockwise
directions. These effects emerge as a particularity of the Fermi-Dirac statistics of electrons in rotating
conductors.

Keywords: mechanical rotation; rotational asymmetry; moment of inertia; electric conductivity

1. Introduction

Our daily-life experience tells us that any physical body has the same moments of
inertia with respect to rotations in clockwise and counterclockwise directions. In our
paper, we show that this statement is no more correct at the quantum level if the statistical
quantum effects of electronic systems are taken into account.

The effects of gravity, rotation, and acceleration on the electromagnetic and trans-
port properties of physical systems have been a subject of intense interest throughout the
decades [1]. The Einstein–de Haas [2] and Barnett [3] effects relate mechanical torque and
magnetization in ferromagnets. In metals, the uniform rotation acts on electrons via a
centrifugal force that produces a small, but experimentally observable radial gradient of
electric potential [4]. The proposed rotational analogue of the classical Hall effect [5] high-
lights a well-known similarity between rotation and the magnetic field in non-relativistic
systems. At the quantum level, rapidly rotating C60 fullerenes are suggested to exhibit
Zeeman splitting in their energy levels in the absence of a true magnetic field [6].

Accelerating conductors generate intrinsic electric fields [7] while gravity exerts a
force on the electrons that induces an electric field outside a metal surface [8]. Gravitational
forces are expected to lead to various thermo-electromagnetic effects in (super) conduc-
tors [9]. At the same time, the quantum Hall conductance, as a true topological quantity,
is insensitive to background gravity [10]. The inclusion of the spin degrees of freedom—
and the ability to mechanically manipulate them in noninertial frames—is expected to
play an important role in nano-electromechanical systems within the scope of the rapidly
developing field of spintronics [11]. The emergence of synthetic gravitational fields in
various condensed matter systems opens a new door for the discovery of novel quantum
gravito-electromagnetic effects [12,13].
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In our paper, we explore the mechanical and transport properties of rotating semicon-
ductors and show that they break the equivalence of clockwise/counterclockwise rotations,
which are naively expected for any isolated system. This purely quantum effect has its roots
in a simple problem of classical electrodynamics which addresses the interplay between
the rotation and the magnetism [14,15]. Before proceeding further, we mention that our
discussion has no direct relation to the Einstein–de Haas effect [2] (which demonstrates the
appearance of a mechanical torque exerted by an external magnetic field on a ferromagnet)
and the Barnett effect [3] (which reveals a reciprocal phenomenon: a mechanical rotation
changes the magnetization of a spinning ferromagnet). These phenomena appear naturally as
a consequence of the conservation of angular momentum. They demonstrate a close relation-
ship between the magnetism, induced by the spin and the orbital motion of the electrons, and
the mechanical rotation. Both the Einstein–de Haas and Barnett effects are unusual under the
time reversal transformation, thus maintaining the symmetry of the system under a clock-
wise/counterclockwise flip in the rotation sense (see, for example, the experimental work [16]).
On the contrary, we consider an effect that breaks the clockwise/counterclockwise symme-
try of rotation.

2. Rotating Conductor in Magnetic-Field Background in Classical Electrodynamics

Let us consider an uncharged conducting cylinder of radius R and height L, which
rotates rigidly with constant angular velocity Ω = Ω ez about its symmetry axis z. We
place the cylinder in the background of constant and uniform magnetic field B = B ez
directed along the axis of rotation as shown in Figure 1a. We set the relative permeability
and permittivity of the material to unity (ε = 1, µ = 1) and use Gaussian units.

(a) (b)

Figure 1. (a) Rotating conducting (metallic) cylinder in the magnetic field background. (b) Qualitative
behavior of the electric charge density inside the cylinder (with w� R).

By treating the system in the scope of classical electrodynamics, one can show that
the interior of the cylinder accumulates a uniformly distributed electric charge with bulk
density [14]:

ρbulk = −ΩB
2πc

, (1)

while the cylinder boundary (the part tangential to the axis z) acquires the uniform surface
charge density:

ρsurf =
RΩB
4πc

. (2)

Since the net electric charge of the isolated cylinder is zero, the bulk Equation (1) and
surface Equation (2) charges compensate each other exactly: πR2Lρbulk + 2πRLρsurf = 0.
We do not restrict the mutual directions of Ω and B so that the excess of the charge den-
sity Equation (1) (and, respectively, Equation (2)) can take both positive and negative values.
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The effect originates from the finite conductivity σ 6= 0 of the rotating cylinder. In
an equilibrium state of an isolated physical body, the Joule losses should be absent. This
property immediately implies the absence of any dissipative electric currents in the system.
In turn, the Ohmic dissipation is generated by a local electric current with respect to the
ionic crystal lattice of the conductor. Therefore, the current should vanish in the corotating
frame in which the conductor appears to be static. If the axis of magnetic field and the
angular velocity vector are aligned with each other, the local magnetic flux piercing the
conductor is not affected by the uniform mechanical rotation. Consequently, the eddy
(Foucault) currents and the associated energy losses are absent.

Denoting the quantities in the corotating (laboratory) frame by tilted (non-tilted)
variables, the infinitesimal transformation between the coordinates in these frames is as
follows:

dr̃ = dr− vdt, dt̃ = dt, v = Ω× r , (3)

where v is the local velocity of the fixed point r of the cylinder with respect to the laboratory
frame. We consider a non-relativistic rotation which guarantees the validity of the causality
constraint, |Ω|R� c, where c is the speed of light.

The electromagnetic fields in the laboratory and corotating frames are related to each
other as follows:

B̃ = B, Ẽ = γ
(

E +
v
c
× B

)
, (4)

where γ = 1/
√

1− v2/c2 is the relativistic Lorentz factor. Hereafter, we ignore all rela-
tivistic corrections because they are negligibly small in this system. The rotational motion
of the bulk Equation (1) and surface Equation (2) electric charges produces, via the Ampère
law, an additional magnetic field; however, this will be dropped out in the following as it
makes a tiny correction to the existing magnetic-field background B. Aside from negligible
relativistic effects, the densities (1) and (2) are the same in the laboratory and corotating
frames, ρ = ρ̃.

The absence of current density in the corotating frame, J̃ = σẼ = 0, implies that the
rotating conductor produces a radial electric field in the laboratory frame:

E = −v
c
× B = −ΩB

c
r⊥. (5)

In the last relation, we take into account the collinearity Ω‖B‖ez, Figure 1a, and
denote by r⊥ the radial component of the coordinate, ez ⊥ r⊥, so that r = r⊥ + zez.

The rotation-induced electric field Equation (5) generates a uniform charge density in
the interior of the cylinder, ρ = ∇ · E/(4π), providing us with the result Equation (1). The
requirement of global charge neutrality leads, in turn, to the accumulation of a uniform
surface charge density Equation (2) at the edge of the cylinder. The charge density is
qualitatively shown in Figure 1b. In real metals, the width w of the surface layer is
extremely small (w� R), of the order of a few nanometers.

3. Rotation and Band Filling

Our paper is based on the simple observation that a mechanical rotation in the back-
ground of the collinear magnetic field leads to a shift in the Fermi energy εF due to the
uniform, coordinate-independent accumulation of electric charge density (1) in the bulk
of the system. We analyze the situation that occurs when the rotation drives the Fermi
energy across the edge of the conductance or valence band. We demonstrate that this
crossing breaks the discrete clockwise/counterclockwise rotational symmetry Ω→ −Ω

for cylinders made of a semiconducting material. The effect impacts the mechanical and
conducting properties of the system.



Symmetry 2021, 13, 1569 4 of 10

Given the generic nature of the effect, it is sufficient to consider a degenerate semiconduc-
tor with a simple parabolic form for conduction and valence energy bands, respectively [17]:

ε
(e)
k = εG +

k2

2me
, ε

(h)
k = − k2

2mh
. (6)

Here, me (mh) is an effective mass of electrons (holes) and εG is the gap between
valence and conduction bands. We neglect Zeeman and spin–orbit interactions, which do
not play a significant role in the effect.

We consider a device made of an intrinsic (undoped) p-type semiconductor with a
fully filled valence band. The Fermi energy lies in the gap close to the edge of the valence
band, as shown in Figure 2a. In conventions leading to Equation (6), the Fermi energy
εF = 0 corresponds to the upper edge of the valence band. We assume that the temperature
is sufficiently low so that thermal energy is smaller than the energy gap between the
bands, kBT � εG. We also coat the cylindrical semiconductor with a thin cylindrical
shell (Figure 3) made of a metal with a wide enough conduction band that includes the
Fermi energy level εF = 0. Therefore, the charge accumulation (1) happens inside the
semiconducting bulk, while the boundary charge buildup Equation (2) occurs within the
thin metallic layer. The electrodes are connected only to the bulk (semiconducting) part of
the device and do not touch the metallic coating.

Figure 2. The effect of rotation on the band filling of a semiconductor rotating with the angular
velocity Ω = Ωez against the background of a magnetic field B = Bez with B > 0.

Figure 3. The rotational diode.
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We apply a background magnetic field along the z axis, B = Bez (with B > 0)
and assume that the magnetic field is sufficiently weak so that the semiconductor band
spectrum Equation (6) serves as a good approximation of the problem.

4. Conductivity and Rotation

With the fully filled valence band, empty conduction band, and the wide energy gap
between these two bands, the interior of the static (non-rotating) cylinder resides in an
electrically insulating state, Figure 2a. The electrons cannot be thermally excited from the
valence band to the conduction band.

The clockwise rotation (Ω < 0) makes the bulk charge density (1) positive, implying
that some of the electrons are relocated from the interior of the cylinder to its metallic
boundary (2). The external metallic coating serves as a reservoir, which accommodates
the electrons that were displaced from the interior of the system. The rotation lowers the
Fermi level in the bulk of the cylinder, thus creating empty states near the Fermi level. The
system enters the conducting regime; see Figure 2b.

The shift in the Fermi energy due to rotation,

εF(Ω) = − h̄2

2mh

(
3πΩB

2c

)2/3
6 0, ΩB > 0 , (7)

is determined by a comparison of the bulk density (1) with the density of the degenerate
fermionic gas (in our case, holes):

ρ =
k3

F

3π2h̄3 , kF =
√
−2mhεF. (8)

Thus, the clockwise rotation (Ω < 0) switches the interior of the cylinder from the
insulator into a conductor phase. For a slow rotation with

|εF(Ω)| � kBT � εG, (9)

the thermally excited electrons from the Fermi sea will fill the hole pocket in the valence
band. In other words, the rotation empties the energy levels in the hole pocket which can
further be populated by a thermally excited electron from the Fermi sea. This process also
creates a hole carrier. Thus, the electron and hole charge carriers have an equal density,
n = p = ρbulk/(−e). The conductivity of the system becomes:

σ = − (µe + µh)ΩB
2πc

> 0, ΩB < 0 (10)

where µe (µh) is the electron (hole) mobility. We used the expression (1) for the carrier
concentration induced by the combined effect of magnetic field and rotation in the semi-
conducting bulk. Note that the effect Equation (10) has a universal character in the sense
that it does not depend on the details of the band structure Equation (6), provided that the
rotation does not shift the Fermi energy Equation (7) across the boundary of the band and
the hierarchy Equation (9) holds.

The counterclockwise rotation (Ω > 0) induces a radial electric field, which tends to
make the bulk charge density (1) negative by displacing the electrons from the metallic
coating to the semiconductor interior. However, the semiconducting bulk cannot accommo-
date them because the valence band is already filled; see Figure 2c. Therefore, the interior
remains in the insulating state (An exceptionally fast rotation with the energy scale of the
interband gap energy can produce a sufficiently strong radial electrochemical potential,
φ = −ΩBr⊥/c which can gradually fill in the conduction band provided εG − φ(L)>0.):

σ = 0, ΩB > 0. (11)
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The clockwise/counterclockwise asymmetry of the device is a purely quantum phe-
nomenon based on the Pauli exclusion principle. Using symmetry arguments, one can
show that the effect has its roots in the absence of definite symmetry with respect to the
time-reversal transformation, T : t → −t. Indeed, the sign flip of the (T-odd) angular
velocity Ω does not bring the device to the same state because the magnetic field B has a
T-odd parity while the electric charge density ρ, accumulated due to the collective effect of
magnetic field and rotation, has a T-even quantity:

T : B→ −B, Ω→ −Ω, ρ→ ρ . (12)

The dependence of the conductivity on the angular frequency, Equations (10) and (11),
is shown in Figure 4: the cylinder made of a semiconductor material with the threshold
chemical potential behaves as an insulator for the rotation in the counterclockwise sense
(Ω > 0) and a conductor when it turns in the counterclockwise direction (Ω > 0). The
directions are inverted with the flip of the sign of the magnetic field.

Figure 4. The conductivity σ of the rotational diode vs. angular frequency Ω. The solid line
corresponds to a p-type semiconductor at the threshold Fermi level, εF = 0. The dashed line gives
the generic case (0 < εF < εG) with a nonzero critical angular frequency Ωc, Equation (13). The linear
slopes are determined by the background magnetic field B > 0, Equation (10).

A similar effect appears in intrinsic n-type semiconductors, where the Fermi energy
lies near the edge of the conduction band, εF = εG. Its phase diagram is reverted with
respect to the direction of rotation, Ω→ −Ω.

The idea behind our mechanism is simple: a background magnetic field tends to shift
the Fermi energy (the chemical potential) in the bulk of the rotating system, thus affecting
the conductivity of the latter. This can also be applied to semimetals with the Fermi energy
lying in the vicinity of the upper edge of the hole pocket (the valence band), or above but
close to the lower edge of the conduction band. The rotation shifts the Fermi energy across
the edge of the corresponding band, and thus alters its conductivity. By denoting the gap
∆F = −εF > 0 and ∆F = εF − εG > 0 in the former and latter cases, respectively, we obtain
that the conductor–insulator transition takes place at the nonzero critical angular frequency
with the magnitude:

Ωc =
2(2m∆F)

3/2

3πh̄3B
, (13)

where m is the mass of the appropriate carrier. The (hole) conductivity is shown in Figure 4
by the dashed line.

5. Mechanical Properties

The effect may also have interesting mechanical consequences. The reorganization
of the electric charge density in rotating conductors produces a supplementary angular
momentum δL = Lmech + Le.m. which adds up to a purely mechanical quantity L0 as-
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sociated with the rotation of the ionic lattice together with the original electrons. There
are two contributions: the mechanical part coming from the mass redistribution of the
displaced electrons Lmech and a part originating from the angular momentum stored in the
electromagnetic fields Le.m..

In typical metals, the surface charge density is concentrated within a thin surface skin
of a few nanometers. For practical mechanical calculations in macroscopic, centimeter-sized
systems, the surface charge Equation (2) can be treated as a δ-functional distribution at
the edge of the system, r⊥ = R. The same applies to semiconductors, where the screening
length lies in the micrometer range. Thus, the electric charge density in the cylinder may
be approximated by the following function:

ρe(r) =
ΩB
4πc

[Rδ(r⊥ − R)− 2], (14)

using the convention
∫ R

0 δ(r⊥ − R)r⊥dr⊥ = R.
The mechanical excess of angular momentum,

Lmech =
∫

V
d3r ρm(r) r× v(r) =

meLΩ2R4

4ce
B, (15)

is determined via the surplus of the mass density

ρm(r) =
me

e
ρe(r) , (16)

where e = +|e| is the elementary electric charge and me is the mass of an electric charge
carrier. Here, for simplicity, we assume the presence of a single carrier and we set its
mass as the electron mass. The mechanical angular momentum (15) originates from the
displacement of the electrons from the bulk to the boundary (or vice-versa, depending
on the mutual orientation of the angular momentum Ω and the background magnetic
field B). Notice that, since the displaced mass is proportional to the angular frequency,
Equations (14) and (16), the kinetic momentum (15) is an even function of Ω.

The local angular momentum carried by the electromagnetic field Le.m.(r) = r × S
can be expressed via the Poynting vector S = E× B. This calculation, however, poses
a practical inconvenience, as it requires the integration of the local momentum over the
whole spatial volume and involves the calculation of the electric field E = −∇φ (typically
done via the electrostatic potential φ = φ(r)) in the exterior of the cylinder. An equivalent
definition of the electromagnetic angular momentum for spatially finite systems is based
on the Maxwell form:

Le.m. =
1
c

∫
d3r ρe(r) r× A =

LB2R4

8c2 Ω , (17)

which involves the vector potential A in the Coulomb gauge, ∇ · A = 0. In the evaluation
of Equation (17), we set B = ∇× A with A = (Br⊥/2)eϕ where eϕ = ez × e⊥.

The energy stored in the induced electrostatic field inside the cylinder Equation (5),
calculated in the laboratory frame,

Ee.m. ≡ E (E)
e.m. =

1
8π

∫
V

d3r E2(r) =
Ω2B2R4

16c2 , (18)

is related to the angular momentum (17) via the thermodynamic relation dEe.m. = Ω · dLe.m.,
as expected. The energy in the corotating frame, Ẽe.m. = Ee.m. −Ω · Le.m., satisfies the
relation, dẼe.m. = −Le.m. · dΩ. Finally, the energy stored by the magnetic field is insensitive
to rotation (up to a tiny correction due to an extra magnetic field generated via the Ampère
circular current).
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As we discuss later, the kinetic angular momentum (15) associated with the displaced
mass Equation (16) in non-relativistic systems is much smaller than the angular momentum
stored in the electromagnetic fields; see Equation (17). Therefore, we ignore the mechani-
cal angular momentum in our discussion below and take the electromagnetic part only,
δL = Le.m., as the excess of the angular momentum.

The electromagnetic moment of inertia Ie.m. can be defined either via the angular
momentum, Le.m. = Ie.m.Ω, or, equivalently, via the energy: Ie.m. = ∂2Ee.m./∂Ω2:

Ie.m. =
1

8π

∫
V

d3r B2(r) =
LR4

8c2 B2 . (19)

In ordinary conductors, the extra angular momentum (17) is an odd function of the
angular frequency Ω: the angular momentum changes its sign, Le.m. → −Le.m., under a
flip of the direction of rotation, Ω → −Ω. The reason for this symmetry is obvious: the
rotations in opposite directions lead to the appearance of radial electric fields of equal
magnitudes (but of opposite signs) due to the displacement of electrons, either from the
bulk to the boundary or vice versa. The electric field emerges due to the depletion (or
surplus) of the uniform electric charge density inside the bulk, depending on the direction
of rotation.

At the threshold chemical potential µ = 0, the rotational diode generates an electric
field for a particular rotational direction for which Ω · B < 0. The rotation in oppo-
site direction (Ω · B > 0) does not produce the electric field in bulk. Therefore, the
rotational energy and angular momentum stored in the induced electric field differs for
rotations in the clockwise (CW) and counterclockwise (CCW) senses. For the device at the
threshold value of the Fermi level, the difference between the angular momenta for the
clockwise/counterclockwise rotations is given by Equation (19):

∆Ie.m. ≡ ICW
e.m. − ICCW

e.m. = − LR4

8c2 B2 sign(Ω · B). (20)

Interestingly, this quantity has a universal character in the sense that it depends only on
the geometry of the device and the background magnetic field.

While the odd nature of the effects and the simplicity of the device that hosts them may
seem attractive, quantitative estimates, given below, challenge the suitability of these effects
for an experimental detection since their magnitude is not exceptionally large. Notice that
the mechanism cannot be realized for band insulators since these materials cannot exhibit
charge displacement from bulk to the surface due to their insulating nature.

6. Electric Charge in the Bulk

In the background of the moderate magnetic field B = 1 T, the cylinder rotating with
the angular frequency (It is of the order of the angular frequency of the consumer hard disk,
Ω = 7200 rpm ∼ 102 s−1.) Ω = 100 s−1 accumulates in its interior the electric charge with
the bulk density ρbulk = −8.8× 103 e/cm3. This is a small, but non-negligible number.

7. Conductivity

The rotation-induced conductivity Equation (10) depends substantially on the mobility
µ of the charge carriers. For a typical semiconductor with mobility µe ∼ µe ∼ 103 cm2/(V·s),
an Ω = 100 s−1 rotation in the magnetic field background B = 1 T induces conductiv-
ity σ ' 10−13 Ω−1cm−1, which makes the interior of the device as “good” a conductor
as, for example, glass or rubber. This exceptionally bad conductivity can, however, be
improved in systems with high-mobility charge carriers (possibly gated to achieve the
correct position of the Fermi level at the upper/lower edge of a hole/electron band so
that the non-rotating system resides at the border of an insulating state). For example,
for AlGaAs/GaAs heterostructures featuring the high-mobility two-dimensional electron
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gas with [18] µ = 3.5× 107 cm2/(V·s), the rotation induces conductivity compared to the
lowest value σ ' 10−8 Ω−1cm−1 achievable in a pure semi-insulating GaAs crystal [19].

8. Angular Momentum

The kinetic angular momentum associated with the radial displacement of electrons
Equation (15) is much smaller than the angular momentum stored in the electromagnetic
field (17): Lmech/Le.m. ∼ 10−9. Therefore, the mechanical properties of the device are
determined only by the electromagnetic fields generated by the rotation. The difference
between the angular moments of inertia for clockwise and counterclockwise rotation
Equation (20) of a centimeter-sized cylinder (L = R = 1 cm) in the magnetic field B = 1 T is
∆Ie.m. ' 10−15 g · cm2. No matter how small this number may seem initially, it corresponds
to a moment of inertia from a water droplet in a typical fine fog (with a size of about 10µm),
which is already a macroscopic object. The latter example provides some hope that the
change in the clockwise/counterclockwise moments of inertia may be within experimental
reach, despite it constituting a negligible fraction of the total moment of inertia of the
system, ∆Ie.m./I tot

e.m. ' 10−16.

9. Summary

We demonstrated that the absence of a definite time-reversal state in a mechanically
rotating semiconductor in the background magnetic field leads to asymmetry in its mechan-
ical and transport properties with respect to rotations in clockwise and counterclockwise
directions. A fine-tuned system becomes a “rotational diode” that possesses different
moments of inertia and resides in different conductor/insulator phases when rotated in
opposite directions. Although the effect has roots in classical electrodynamics of rotating
conductors in the background magnetic field, the clockwise/counterclockwise rotational
asymmetry appears as a purely quantum phenomenon based on the Pauli exclusion princi-
ple. The estimated magnitude of these effects is rather small for realistic materials.
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