Quark Self-Energy and Condensates in NJL Model with External Magnetic Field
Abstract
1. Introduction
2. The Gap Equations
2.1. NJL Model and Mean-Field Approximation
2.2. The Gap Equations
2.3. The Coupling Constant and Cut-Off Parameter
3. The Solutions of the Gap Equations
3.1. The Approximate Solutions in Chiral Symmetry Broken Phase
3.2. The Solutions in Chiral Symmetry Restored Phase
4. Conclusions and Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. The Properties of |m, p3; n, α〉
Appendix B. The Expressions of f1, f2, f3, f4
References
- Fukushima, K. Phase diagrams in the three-flavor Nambu–Jona-Lasinio model with the Polyakov loop. Phys. Rev. D 2008, 77, 114028. [Google Scholar] [CrossRef]
- Costa, P.; de Sousa, C.A.; Ruivo, M.C.; Kalinovsky, Y.L. The QCD critical end point in the SU(3) Nambu–Jona-Lasinio model. Phys. Lett. B 2007, 647, 431. [Google Scholar] [CrossRef]
- Shi, C.; Wang, Y.-L.; Jiang, Y.; Cui, Z.-F.; Zong, H.-S. Locate QCD critical end point in a continuum model study. J. High Energy Phys. 2014, 7, 014. [Google Scholar] [CrossRef]
- Zhao, A.-M.; Cui, Z.-F.; Jiang, Y.; Zong, H.-S. Nonlinear susceptibilities under the framework of Dyson-Schwinger equations. Phys. Rev. D 2014, 90, 114031. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, L.-J.; Zong, H.-S. A model study of quark number susceptibility at finite temperature beyond rainbow-ladder approximation. J. High Energy Phys. 2011, 2, 66. [Google Scholar] [CrossRef][Green Version]
- Xu, S.-S.; Cui, Z.-F.; Wang, B.; Shi, Y.-M.; Yang, Y.-C.; Zong, H.-S. Chiral phase transition with a chiral chemical potential in the framework of Dyson-Schwinger equations. Phys. Rev. D 2015, 91, 056003. [Google Scholar] [CrossRef]
- Fu, W.-J.; Zhang, Z.; Liu, Y.-X. 2+1 flavor Polyakov–Nambu–Jona-Lasinio model at finite temperature and nonzero chemical potential. Phys. Rev. D 2008, 77, 014006. [Google Scholar] [CrossRef]
- Kharzeev, D.E.; McLerran, L.D.; Warringa, H.J. The effects of topological charge change in heavy ion collisions: “Event by event P and CP violation”. Nucl. Phys. A 2008, 803, 227. [Google Scholar] [CrossRef]
- Gusynin, V.P.; Miransky, V.A.; Shovkovy, I.A. Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in 3+1 dimensions. Phys. Lett. B 1995, 349, 477. [Google Scholar] [CrossRef]
- Gusynin, V.P.; Miransky, V.A.; Shovkovy, I.A. Dynamical chiral symmetry breaking by a magnetic field in QED. Phys. Rev. D 1995, 52, 4747. [Google Scholar] [CrossRef]
- Ebert, D.; Klimenko, K.G.; Vdovichenko, M.A.; Vshivtsev, A.S. Magnetic oscillations in dense cold quark matter with four-fermion interactions. Phys. Rev. D 1999, 61, 025005. [Google Scholar] [CrossRef]
- Kharzeev, D.; Landsteiner, K.; Schmitt, A.; Yee, H.-U. Strongly Interacting Matter in Magnetic Fields. Lect. Notes Phys. 2013, 871, 13. [Google Scholar]
- Chodos, A.; Everding, K.; Owen, D.A. QED with a chemical potential: The case of a constant magnetic field. Phys. Rev. D 1990, 42, 2881. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.O.; Naylor, W.R.; Tranberg, A. Phase diagram of QCD in a magnetic field. Rev. Mod. Phys. 2016, 88, 025001. [Google Scholar] [CrossRef]
- Endrödi, G. Critical point in the QCD phase diagram for extremely strong background magnetic fields. J. High Energy Phys. 2015, 7, 173. [Google Scholar] [CrossRef]
- Bali, G.S.; Bruckmann, F.; Endrödi, G.; Fodor, Z.; Katz, S.D.; Schäfer, A. QCD quark condensate in external magnetic fields. Phys. Rev. D 2012, 86, 071502. [Google Scholar] [CrossRef]
- Ghosh, S.; Mandal, S.; Chakrabarty, S. Chiral properties of the QCD vacuum in ultrastrong magnetic fields: A Nambu-Jona-Lasinio model with a semiclassical approximation. Phys. Rev. C 2007, 75, 015805. [Google Scholar] [CrossRef]
- Menezes, D.P.; Pinto, M.B.; Avancini, S.S.; Martínez, A.P. Quark matter under strong magnetic fields in the Nambu–Jona-Lasinio model. Phys. Rev. C 2009, 79, 035807. [Google Scholar] [CrossRef]
- Menezes, D.P.; Pinto, M.B.; Avancini, S.S.; Providência, C. Quark matter under strong magnetic fields in the su(3) Nambu–Jona-Lasinio model. Phys. Rev. C 2009, 80, 065805. [Google Scholar] [CrossRef]
- Shi, S.; Yang, Y.-C.; Xia, Y.-H.; Cui, Z.-F.; Liu, X.-J.; Zong, H.-S. Dynamical chiral symmetry breaking in the NJL model with a constant external magnetic field. Phys. Rev. D 2015, 91, 036006. [Google Scholar] [CrossRef]
- Du, Y.-L.; Cui, Z.-F.; Xia, Y.-H.; Zong, H.-S. Discussions on the crossover property within the Nambu–Jona-Lasinio model. Phys. Rev. D 2013, 88, 114019. [Google Scholar] [CrossRef]
- Cui, Z.-F.; Hou, F.-Y.; Shi, Y.-M.; Wang, Y.-L.; Zong, H.-S. Progress in vacuum susceptibilities and their applications to the chiral phase transition of QCD. Ann. Phys. 2015, 358, 172. [Google Scholar] [CrossRef]
- Du, Y.-L.; Lu, Y.; Xue, S.-S.; Cui, Z.-F.; Shi, C.; Zong, H.-S. Susceptibilities and critical exponents within the Nambu–Jona-Lasinio model. Int. J. Mod. Phys. A. 2015, 30, 1550199. [Google Scholar] [CrossRef]
- Lu, Y.; Du, Y.-L.; Cui, Z.-F.; Zong, H.-S. Critical behaviors near the (tri-)critical end point of QCD within the NJL model. Eur. Phys. J. C 2015, 75, 495. [Google Scholar] [CrossRef]
- Volkov, M.K.; Radzhabov, A.E. Forty-fifth anniversary of the Nambu-Jona-Lasinio model. arXiv 2005, arXiv:0508263v2. [Google Scholar]
- Asakawa, M.; Yazaki, K. Chiral restoration at finite density and temperature. Nucl. Phys. A 1989, 504, 668. [Google Scholar]
- Klevansky, S.P. The Nambu—Jona-Lasinio model of quantum chromodynamics. Rev. Mod. Phys. 1992, 64, 649. [Google Scholar] [CrossRef]
- Ferrer, E.J.; Incera, V.; Portillo, I.; Quiroz, M. New look at the QCD ground state in a magnetic field. Phys. Rev. D 2014, 89, 085034. [Google Scholar] [CrossRef]
- Creutz, M. One flavor QCD. Ann. Phys. 2007, 322, 1518. [Google Scholar] [CrossRef]
- Cahill, R.T.; Gunner, S.M. Global Colour Model of QCD and its Relationship to the NJL Model, Chiral Perturbation Theory and Other Models. Aust. J. Phys. 1997, 50, 103. [Google Scholar] [CrossRef][Green Version]
- Buballa, M. NJL-model analysis of dense quark matter. Phys. Rep. 2005, 407, 205. [Google Scholar] [CrossRef]
- Kapusta, J.I.; Gale, C. Finite-Temperature Field Theory: Principles and Applications; Cambridge University Press: Cambridge, NY, USA, 1989; p. 50. [Google Scholar]
- Inagaki, T.; Kimura, D.; Murata, T. Four-Fermion Interaction Model in a Constant Magnetic Field at Finite Temperature and Chemical Potential. Prog. Theor. Phys. 2004, 111, 371. [Google Scholar] [CrossRef]
- Metlitski, M.A.; Zhitnitsky, A.R. Anomalous axion interactions and topological currents in dense matter. Phys. Rev. D 2005, 72, 045011. [Google Scholar] [CrossRef]
- Fukushima, K.; Kharzeev, D.E.; Warringa, H.J. Chiral magnetic effect. Phys. Rev. D 2008, 78, 074033. [Google Scholar] [CrossRef]
- Vilenkin, A. Equilibrium parity-violating current in a magnetic field. Phys. Rev. D 1980, 22, 3080. [Google Scholar] [CrossRef]
- Giovannini, M.; Shaposhnikov, M.E. Primordial hypermagnetic fields and the triangle anomaly. Phys. Rev. D 1998, 57, 2186. [Google Scholar] [CrossRef]
- Fukushima, K.; Morales, P.A. Spatial Modulation and Topological Current in Holographic QCD Matter. Phys. Rev. Lett. 2013, 111, 051601. [Google Scholar] [CrossRef]
- Maruyama, T.; Tatsumi, T. Ferromagnetism of nuclear matter in the relativistic approach. Nucl. Phys. A 2001, 693, 710. [Google Scholar] [CrossRef]
- Nakano, E.; Maruyama, T.; Tatsumi, T. Spin polarization and color superconductivity in quark matter. Phys. Rev. D 2003, 68, 105001. [Google Scholar] [CrossRef]
- Tatsumia, T.; Maruyama, T.; Nakano, E.; Nawa, K. Ferromagnetism in quark matter and origin of the magnetic field in compact stars. Nucl. Phys. A 2006, 774, 827. [Google Scholar] [CrossRef]
- Sakurai, J.J. Advanced Quantum Mechanics; Addison-Wesley: Reading, MA, USA, 1967; pp. 108–110. [Google Scholar]
- Ferreira, M.; Costa, P.; Lourenço, O.; Frederico, T.; Providência, C. Inverse magnetic catalysis in the (2+1)-flavor Nambu–Jona-Lasinio and Polyakov–Nambu–Jona-Lasinio models. Phys. Rev. D 2014, 89, 116011. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Du, Y.; Shi, S. Quark Self-Energy and Condensates in NJL Model with External Magnetic Field. Symmetry 2021, 13, 1410. https://doi.org/10.3390/sym13081410
Liu J, Du Y, Shi S. Quark Self-Energy and Condensates in NJL Model with External Magnetic Field. Symmetry. 2021; 13(8):1410. https://doi.org/10.3390/sym13081410
Chicago/Turabian StyleLiu, Juan, Yilun Du, and Song Shi. 2021. "Quark Self-Energy and Condensates in NJL Model with External Magnetic Field" Symmetry 13, no. 8: 1410. https://doi.org/10.3390/sym13081410
APA StyleLiu, J., Du, Y., & Shi, S. (2021). Quark Self-Energy and Condensates in NJL Model with External Magnetic Field. Symmetry, 13(8), 1410. https://doi.org/10.3390/sym13081410