Active Suppression of Piezoelectric Ringing in Pockels Cells for Laser Cavity Application
Abstract
:1. Introduction
2. High Voltage Driver for Active Suppression of Piezoelectric Ringing
3. Experimental Investigation of Active Piezoelectric Ringing Suppression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, T.; Gao, F.; Zhang, X.; Xiong, B.; Yuan, X. Bidirectional Ring Amplifier with Twin Pulses for High-Power Lasers. Opt. Express OE 2018, 26, 15300–15307. [Google Scholar] [CrossRef]
- Rezvani, S.A.; Suzuki, M.; Malevich, P.; Livache, C.; de Montgolfier, J.V.; Nomura, Y.; Tsurumachi, N.; Baltuška, A.; Fuji, T. Millijoule Femtosecond Pulses at 1937 Nm from a Diode-Pumped Ring Cavity Tm:YAP Regenerative Amplifier. Opt. Express OE 2018, 26, 29460–29470. [Google Scholar] [CrossRef]
- Fattahi, H.; Alismail, A.; Wang, H.; Brons, J.; Pronin, O.; Buberl, T.; Vámos, L.; Arisholm, G.; Azzeer, A.M.; Krausz, F. High-Power, 1-Ps, All-Yb:YAG Thin-Disk Regenerative Amplifier. Opt. Lett. 2016, 41, 1126–1129. [Google Scholar] [CrossRef] [PubMed]
- Giesberts, M.; Fitzau, O.; Hoffmann, H.-D.; Lange, R.; Bachert, C.; Krause, V. Directly Q-Switched High Power Resonator Based on XLMA-Fibers. In Proceedings of the Fiber Lasers XV: Technology and Systems; International Society for Optics and Photonics, San Francisco, CA, USA, 29 January–1 February 2018; Volume 10512, p. 1051218. [Google Scholar]
- Römer, G.R.B.E.; Bechtold, P. Electro-Optic and Acousto-Optic Laser Beam Scanners. Phys. Procedia 2014, 56, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Martinez, A.; Wang, F. Optical Modulators with 2D Layered Materials. Nat. Photonics 2016, 10, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Munk, A.; Jungbluth, B.; Strotkamp, M.; Hoffmann, H.-D.; Poprawe, R.; Höffner, J. Diode-Pumped Alexandrite Ring Laser for Lidar Applications. In Proceedings of the Solid State Lasers XXV: Technology and Devices, International Society for Optics and Photonics, San Francisco, CA, USA, 16 March 2016; Volume 9726, p. 97260I. [Google Scholar]
- Heinrich, D.; Guggemos, M.; Guevara-Bertsch, M.; Hussain, M.I.; Roos, C.F.; Blatt, R. Ultrafast Coherent Excitation of a 40Ca+ Ion. New J. Phys. 2019, 21, 073017. [Google Scholar] [CrossRef]
- Liu, K.; Ye, C.R.; Khan, S.; Sorger, V.J. Review and Perspective on Ultrafast Wavelength-Size Electro-Optic Modulators. Laser Photonics Rev. 2015, 9, 172–194. [Google Scholar] [CrossRef]
- Svelto, O. Principles of Lasers, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-1-4419-1301-2. [Google Scholar]
- Koechner, W. Solid-State Laser Engineering; Springer Series in Optical Sciences, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-0-387-29094-2. [Google Scholar]
- Eichler, H.J.; Eichler, J.; Lux, O. Lasers: Basics, Advances and Applications; Springer Series in Optical Sciences; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-99893-0. [Google Scholar]
- Goldstein, R. Electro-Optic Devices in Review. Lasers Appl. 1986, 5, 67–73. [Google Scholar]
- Goldstein, R. Pockels Cell Primer. Laser Focus 1968, 34, 21. [Google Scholar]
- Sinkevicius, G.; Vengelis, J.; Banys, J.; Masiulis, L.; Grigonis, R.; Baskys, A.; Sirutkaitis, V.; Domarkas, J. Investigation of Piezoelectric Ringing Effects in Deuterated Potassium Dihydrogen Phosphate Crystals. Opt. Eng. 2020, 59, 1–11. [Google Scholar] [CrossRef]
- Vengelis, J.; Sinkevičius, G.; Banys, J.; Masiulis, L.; Grigonis, R.; Domarkas, J.; Sirutkaitis, V. Investigation of Piezoelectric Ringing Effects in Pockels Cells Based on Beta Barium Borate Crystals. Appl. Opt. 2019, 58, 9240–9250. [Google Scholar] [CrossRef]
- Takeda, K.; Hoshina, T.; Takeda, H.; Tsurumi, T. Electro-Optic Effect of Lithium Niobate in Piezoelectric Resonance. J. Appl. Phys. 2012, 112, 124105. [Google Scholar] [CrossRef]
- Sinkevicius, G.; Baskys, A. Investigation of Piezoelectric Ringing Frequency Response of Beta Barium Borate Crystals. Crystals 2019, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, F.; Siebold, M.; Loeser, M.; Röser, F.; Albach, D.; Schramm, U. MHz Repetion Rate Yb:YAG and Yb:CaF2 Regenerative Picosecond Laser Amplifiers with a BBO Pockels Cell. Appl. Sci. 2015, 5, 761–769. [Google Scholar] [CrossRef] [Green Version]
- Sinkevicius, G.; Baskys, A. Investigation of Frequency Response of Pockels Cells Based on Beta Barium Borate Crystals. In Proceedings of the 2017 Open Conference of Electrical, Electronic and Information Sciences (eStream), Vilnius, Lithuania, 27 April 2017; pp. 1–4. [Google Scholar]
- Yin, X.; Jiang, M.; Sun, Z.; Hui, Y.; Lei, H.; Li, Q. Intrinsic Reduction the Depolarization Loss in Electro-Optical Q-Switched Laser Using a Rectangular KD*P Crystal. Opt. Commun. 2017, 398, 107–111. [Google Scholar] [CrossRef]
- Nickel, D.; Stolzenburg, C.; Beyertt, A.; Giesen, A.; Häußermann, J.; Butze, F.; Leitner, M. 200 KHz Electro-Optic Switch for Ultrafast Laser Systems. Rev. Sci. Instrum. 2005, 76, 033111. [Google Scholar] [CrossRef]
- Salvestrini, J.P.; Abarkan, M.; Fontana, M.D. Comparative Study of Nonlinear Optical Crystals for Electro-Optic Q-Switching of Laser Resonators. Opt. Mater. 2004, 26, 449–458. [Google Scholar] [CrossRef]
- Springer Handbook of Lasers and Optics, 2nd ed.; Träger, F. (Ed.) Springer Handbooks; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-19408-5. [Google Scholar]
- Kim, H.; Yu, C.; Jang, S.; Kim, G. Solid-State Pulsed Power Modulator With Fast Rising/Falling Time and High Repetition Rate for Pockels Cell Drivers. IEEE Trans. Ind. Electron. 2019, 66, 4334–4343. [Google Scholar] [CrossRef]
- Biryuchinskiy, S.; Melnikov, K.; Melnikov, V. Analysis of an Ultrafast MOSFET Based Pockels Cell Driver. Available online: https://www.scientific.net/AMR.679.53 (accessed on 1 December 2020).
- Bishop, A.I.; Barker, P.F. Subnanosecond Pockels Cell Switching Using Avalanche Transistors. Rev. Sci. Instrum. 2006, 77, 044701. [Google Scholar] [CrossRef]
- She, X.; Huang, A.Q.; Lucía, Ó.; Ozpineci, B. Review of Silicon Carbide Power Devices and Their Applications. IEEE Trans. Ind. Electron. 2017, 64, 8193–8205. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Guo, S.; Lei, Y.; Huang, A.Q.; Zhang, B. Understanding Switching Losses in SiC MOSFET: Toward Lossless Switching. In Proceedings of the 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Blacksburg, VA, USA, 2–4 November 2015; pp. 257–262. [Google Scholar]
- Liu, Z.; Cong, L.; Lee, H. Design of On-Chip Gate Drivers With Power-Efficient High-Speed Level Shifting and Dynamic Timing Control for High-Voltage Synchronous Switching Power Converters. IEEE J. Solid State Circuits 2015, 50, 1463–1477. [Google Scholar] [CrossRef]
- Physical Properties of Silicon Carbide. In Fundamentals of Silicon Carbide Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 11–38. ISBN 978-1-118-31353-4.
- Baek, J.W.; Yoo, D.W.; Rim, G.H.; Lai, J.-S. Solid State Marx Generator Using Series-Connected IGBTs. IEEE Trans. Plasma Sci. 2005, 33, 1198–1204. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, X.; Qiao, L.; Zhang, F.; Wang, L. A Novel Solid-State DC-Breaker Based on Cascaded SiC MOSFETs. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017; pp. 824–828. [Google Scholar]
- Samsonas, D.; Petrulionis, D.; Grigaitis, D.; Vengris, M. Influence of the Piezoelectric Ringing on the Polarisation Contrast of the KRTP Pockels Cell in the Modulation Frequency Range up to 10 MHz. In Components and Packaging for Laser Systems VII; International Society for Optics and Photonics: Bellingham, WA, USA, 5 March 2021; Volume 11667, p. 116670G. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinkevicius, G.; Baskys, A.; Tamošauskas, G. Active Suppression of Piezoelectric Ringing in Pockels Cells for Laser Cavity Application. Symmetry 2021, 13, 677. https://doi.org/10.3390/sym13040677
Sinkevicius G, Baskys A, Tamošauskas G. Active Suppression of Piezoelectric Ringing in Pockels Cells for Laser Cavity Application. Symmetry. 2021; 13(4):677. https://doi.org/10.3390/sym13040677
Chicago/Turabian StyleSinkevicius, Giedrius, Algirdas Baskys, and Gintaras Tamošauskas. 2021. "Active Suppression of Piezoelectric Ringing in Pockels Cells for Laser Cavity Application" Symmetry 13, no. 4: 677. https://doi.org/10.3390/sym13040677
APA StyleSinkevicius, G., Baskys, A., & Tamošauskas, G. (2021). Active Suppression of Piezoelectric Ringing in Pockels Cells for Laser Cavity Application. Symmetry, 13(4), 677. https://doi.org/10.3390/sym13040677