Gravity with Explicit Diffeomorphism Breaking
Abstract
1. Introduction
2. Explicit Diffeomorphism Breaking
3. Consistency Conditions with Explicit Breaking
4. SME with Explicit Diffeomorphism Breaking
5. Examples with Matter Couplings
5.1. Massive Gravity
5.2. Hořava-Based Model with a Preferred Spacetime Foliation
5.2.1. Scalar and Vector Fields
5.2.2. Vierbein Description and Fermions
6. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Noether, E. Invariante Variationsprobleme (Invariant Variation Problems). Nachr. Königlichen Ges. Wiss. Göttingen Math. Phys. Kl. 1918, II, 235–257. (In German) [Google Scholar]
- Trautman, A. Conservation laws in general relativity. In Gravitation: An Introduction to Current Research; Witten, L., Ed.; J. Wiley: New York, NY, USA, 1962. [Google Scholar]
- Kostelecký, V.A.; Samuel, S. Gravitational phenomenology in higher dimensional theories and strings. Phys. Rev. D 1989, 40, 1886. [Google Scholar] [CrossRef] [PubMed]
- Kostelecký, V.A.; Samuel, S. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 1989, 39, 683. [Google Scholar] [CrossRef] [PubMed]
- Kostelecký, V.A.; Samuel, S. Phenomenological Gravitational Constraints on Strings and Higher Dimensional Theories. Phys. Rev. Lett. 1989, 63, 224. [Google Scholar] [CrossRef] [PubMed]
- Hinterbichler, K. Theoretical Aspects of Massive Gravity. Rev. Mod. Phys. 2012, 84, 671. [Google Scholar] [CrossRef]
- De Rham, C. Massive Gravity. Living Rev. Relativ. 2014, 17, 7. [Google Scholar] [CrossRef] [PubMed]
- Jackiw, R. Lorentz violation in a diffeomorphism-invariant theory. In CPT and Lorentz Symmetry IV; Kostelecký, V.A., Ed.; World Scientific: Singapore, 2008. [Google Scholar]
- Bluhm, R.; Kostelecký, V.A. Spontaneous Lorentz violation, Nambu-Goldstone modes, and gravity. Phys. Rev. D 2005, 71, 065008. [Google Scholar] [CrossRef]
- Bertolami, O.; Paramos, J. The flight of the bumblebee: Vacuum solutions of a gravity model with vector-induced spontaneous Lorentz symmetry breaking. Phys. Rev. D 2005, 72, 044001. [Google Scholar] [CrossRef]
- Bluhm, R.; Fung, S.-H.; Kostelecký, V.A. Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity. Phys. Rev. D 2008, 77, 065020. [Google Scholar] [CrossRef]
- Bluhm, R.; Gagne, N.L.; Potting, R.; Vrublevskis, A. Constraints and stability in vector theories with spontaneous Lorentz violation. Phys. Rev. D 2008, 77, 125007. [Google Scholar] [CrossRef]
- Seifert, M.D. Generalized bumblebee models and Lorentz-violating electrodynamics. Phys. Rev. D 2010, 81, 065010. [Google Scholar] [CrossRef]
- Hernaski, C.A. Quantization and stability of bumblebee electrodynamics. Phys. Rev. D 2014, 90, 124036. [Google Scholar] [CrossRef]
- Assuncao, J.F.; Mariz, T.; Nascimento, J.R.; Petrov, A.Y. Dynamical Lorentz symmetry breaking in a tensor bumblebee model. Phys. Rev. D 2019, 100, 085009. [Google Scholar] [CrossRef]
- Li, Z.; Ovgun, A. Finite-distance gravitational deflection of massive particles by the Kerr-like black hole in the bumblebee gravity model. Phys. Rev. D 2020, 101, 024040. [Google Scholar] [CrossRef]
- Maluf, R.V.; Neves, J.C.S. Black holes with a cosmological constant in bumblebee gravity. Phys. Rev. D 2021, 103, 044002. [Google Scholar] [CrossRef]
- Jacobson, T. Einstein-aether gravity: A status report. arXiv 2007, arXiv:0801.1547. [Google Scholar]
- Hořava, P. Quantum gravity at a Lifshitz point. Phys. Rev. D 2009, 79, 084008. [Google Scholar] [CrossRef]
- Mukohyama, S. Hořava–Lifshitz cosmology: A review. Class. Quantum Gravity 2010, 27, 223101. [Google Scholar] [CrossRef]
- Sotiriou, T.P. Hořava-Lifshitz gravity: A status report. J. Phys. Conf. Ser. 2011, 283, 012034. [Google Scholar] [CrossRef]
- Blas, D.; Pujolas, O.; Sibiryakov, S. Models of non-relativistic quantum gravity: The good, the bad, and the healthy. J. High Energy Phys. 2011, 1104, 018. [Google Scholar] [CrossRef]
- Wang, A. Hořava Gravity at a Lifshitz Point: A Progress Report. Int. J. Mod. Phys. D 2017, 26, 1730014. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. Lorentz-violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Lehnert, R. Stability, causality, and Lorentz and CPT violation. Phys. Rev. D 2001, 63, 065008. [Google Scholar] [CrossRef]
- Kostelecký, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev. D 2004, 69, 105009. [Google Scholar] [CrossRef]
- Bluhm, R. Overview of the SME: Implications and Phenomenology of Lorentz Violation. In Special Relativity: Will It Survive the Next 101 Years? Ehlers, J., Lämmerzahl, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Tasson, J. What Do We Know about Lorentz Invariance? Rep. Prog. Phys. 2014, 77, 062901. [Google Scholar] [CrossRef] [PubMed]
- Bluhm, R. Observable Constraints on Local Lorentz Invariance. In Springer Handbook of Spacetime; Ashtekar, A., Petkov, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Hees, A.; Bailey, Q.G.; Bourgoin, A.; Bars, H.P.; Guerlin, C.; le Poncin-Lafitte, C. Tests of Lorentz symmetry in the gravitational sector. Universe 2016, 2, 30. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Russell, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 2011, 83, 11. [Google Scholar] [CrossRef]
- Bluhm, R. Explicit versus spontaneous diffeomorphism breaking in gravity. Phys. Rev. D 2015, 91, 065034. [Google Scholar] [CrossRef]
- Bluhm, R. Spacetime symmetry breaking and Einstein–Maxwell theory. Phys. Rev. D 2015, 92, 085015. [Google Scholar] [CrossRef]
- Bluhm, R.; Šehić, A. Noether identities in gravity theories with nondynamical backgrounds and explicit spacetime symmetry breaking. Phys. Rev. D 2016, 94, 104034. [Google Scholar] [CrossRef]
- Bluhm, R. Gravity theories with background fields and spacetime symmetry breaking. Symmetry 2017, 9, 230. [Google Scholar] [CrossRef]
- Bonder, Y.; Corral, C. Is there any symmetry left in gravity theories with explicit Lorentz violation? Symmetry 2018, 10, 433. [Google Scholar] [CrossRef]
- Bluhm, R.; Bossi, H.; Wen, Y. Gravity with explicit spacetime symmetry breaking and the Standard-Model Extension. Phys. Rev. D 2019, 100, 084022. [Google Scholar] [CrossRef]
- Bonder, Y.; Peterson, C. Explicit Lorentz violation in a static and spherically-symmetric spacetime. Phys. Rev. D 2020, 101, 064056. [Google Scholar] [CrossRef]
- O’Neal-Ault, K.; Bailey, Q.G.; Nilsson, N.A. 3+1 formulation of the standard model extension gravity sector. Phys. Rev. D 2021, 103, 044010. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Li, Z. Backgrounds in gravitational effective field theory. Phys. Rev. D 2021, 103, 024059. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Georgi, H.; Schwartz, M.D. Effective field theory for massive gravitons and gravity in theory space. Ann. Phys. 2003, 305, 96–118. [Google Scholar] [CrossRef]
- Bailey, Q.G.; Kostelecký, V.A. Signals for Lorentz violation in post-Newtonian gravity. Phys. Rev. D 2006, 74, 045001. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Tasson, J.D. Prospects for Large Relativity Violations in Matter-Gravity Couplings. Phys. Rev. Lett. 2009, 102, 010402. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Tasson, J.D. Matter-gravity couplings and Lorentz violation. Phys. Rev. D 2011, 83, 016013. [Google Scholar] [CrossRef]
- Battat, J.B.R.; Chandler, J.F.; Stubbs, C.W. Testing for Lorentz Violation: Constraints on Standard-Model Extension Parameters via Lunar Laser Ranging. Phys. Rev. Lett. 2007, 99, 241103. [Google Scholar] [CrossRef]
- Bourgoin, A.; Hees, A.; Bouquillon, S.; le Poncin-Lafitte, C.; Francou, G.; Angonin, M.-C. Testing Lorentz symmetry with Lunar Laser Ranging. Phys. Rev. Lett. 2016, 117, 241301. [Google Scholar] [CrossRef] [PubMed]
- Mueller, H.; Chiow, S.-W.; Herrmann, S.; Chu, S.; Chung, K.-Y. Atom Interferometry tests of the isotropy of post-Newtonian gravity. Phys. Rev. Lett. 2008, 100, 031101. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.-Y.; Chiow, S.-W.; Herrmann, S.; Chu, S.; Mueller, H. Atom interferometry tests of local Lorentz invariance in gravity and electrodynamics. Phys. Rev. D 2009, 80, 016002. [Google Scholar] [CrossRef]
- Shao, C.-G.; Chen, Y.-F.; Sun, R.; Cao, L.-S.; Zhou, M.-K.; Hu, Z.-K.; Yu, C.; Mueller, H. Limits on Lorentz violation in gravity from worldwide superconducting gravimeters. Phys. Rev. D 2018, 97, 024019. [Google Scholar] [CrossRef]
- Bennett, D.; Skavysh, V.; Long, J. Search for Lorentz violation in short-range gravity. In CPT and Lorentz Symmetry V; Kostelecký, V.A., Ed.; World Scientific: Singapore, 2011. [Google Scholar]
- Bailey, Q.G.; Kostelecký, V.A. Short-range gravity and Lorentz violation. Phys. Rev. D 2015, 91, 022006. [Google Scholar] [CrossRef]
- Long, J.C.; Kostelecký, V.A. Search for Lorentz violation in short-range gravity. Phys. Rev. D 2015, 91, 092003. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Testing local Lorentz invariance with short-range gravity. Phys. Lett. B 2017, 766, 137–143. [Google Scholar] [CrossRef]
- Shao, C.G.; Chen, Y.F.; Tan, Y.J.; Yang, S.Q.; Luo, J.; Tobar, M.E.; Long, J.C.; Weisman, E.; Kostelecký, V.A. Combined Search for a Lorentz-Violating Force in Short-Range Gravity Varying as the Inverse Sixth Power of Distance. Phys. Rev. Lett. 2019, 122, 011102. [Google Scholar] [CrossRef]
- Lambiase, G. Standard model extension with gravity and gravitational baryogenesis. Phys. Lett. B 2006, 642, 9–12. [Google Scholar] [CrossRef]
- Bailey, Q.G.; Everett, R.D.; Overduin, J.M. Limits on violations of Lorentz symmetry from Gravity Probe B. Phys. Rev. D 2013, 88, 102001. [Google Scholar] [CrossRef]
- Iorio, L. Orbital effects of Lorentz-violating Standard Model Extension gravitomagnetism around a static body: A sensitivity analysis. Class. Quantum Gravity 2012, 29, 175007. [Google Scholar] [CrossRef]
- Hees, A.; Bailey, Q.G.; Le Poncin-Lafitte, C.; Bourgoin, A.; Rivoldini, A.; Lamine, B.; Meynadier, F.; Guerlin, C.; Wolf, P. Testing Lorentz symmetry with planetary orbital dynamics. Phys. Rev. D 2015, 92, 064049. [Google Scholar] [CrossRef]
- Shao, L. Tests of local Lorentz invariance violation of gravity in the Standard Model Extension with pulsars. Phys. Rev. Lett. 2014, 112, 111103. [Google Scholar] [CrossRef]
- Shao, L. New pulsar limit on local Lorentz invariance violation of gravity in the standard-model extension. Phys. Rev. D 2014, 90, 122009. [Google Scholar] [CrossRef]
- Jennings, R.J.; Tasson, J.D.; Yuan, S. Matter-sector violation in binary pulsars. Phys. Rev. D 2015, 9, 125028. [Google Scholar] [CrossRef]
- Shao, L.; Bailey, Q.D. Testing velocity-dependent CPT-violating gravitational forces with radio pulsars. Phys. Rev. D 2018, 98, 084049. [Google Scholar] [CrossRef]
- Shao, L.; Bailey, Q.D. Testing the gravitational weak equivalence principle in the Standard-Model Extension with binary pulsars. Phys. Rev. D 2019, 99, 084017. [Google Scholar] [CrossRef]
- Moseley, S.; Scaramuzza, N.; Tasson, J.D.; Trostel, M.L. Lorentz violation and Sagnac gyroscopes. Phys. Rev. D 2019, 100, 064031. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Tasson, J.D. Constraints on Lorentz violation from gravitational Cherenkov radiation. Phys. Lett. B 2015, 749, 551–559. [Google Scholar] [CrossRef]
- Schreck, M. (Gravitational) vacuum Cherenkov radiation. Symmetry 2018, 10, 424. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Testing local Lorentz invariance with gravitational waves. Phys. Lett. B 2016, 757, 510–514. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Lorentz and diffeomorphism violations in linearized gravity. Phys. Lett. B 2018, 779, 136–142. [Google Scholar] [CrossRef]
- Wei, J.J.; Wu, X.F.; Zhang, B.B.; Shao, L.; Mészáros, P.; Kostelecký, V.A. Constraining Anisotropic Lorentz Violation via the Spectral-Lag Transition of GRB 160625B. Astrophys. J. 2017, 842, 115. [Google Scholar] [CrossRef]
- Bonder, Y. Lorentz violation in the gravity sector: The t puzzle. Phys. Rev. D 2015, 91, 125002. [Google Scholar] [CrossRef]
- Colladay, D.; McDonald, P. Redefining spinors in Lorentz violating QED. J. Math. Phys. 2002, 43, 3554–3564. [Google Scholar] [CrossRef]
- Hinterbichler, K.; Rosen, R.A. Interacting Spin-2 Fields. J. High Energy Phys. 2012, 7, 47. [Google Scholar] [CrossRef]
- Deffayet, C.; Mourad, J.; Zahariade, G. A note on symmetric vielbeins in bimetric, massive, perturbative and non perturbative gravities. J. High Energy Phys. 2013, 3, 86. [Google Scholar] [CrossRef]
- de Rham, C.; Heisenberg, L.; Ribeiro, R.H. Quantum corrections in massive gravity. Phys. Rev. D 2013, 88, 084058. [Google Scholar] [CrossRef]
- de Rham, C.; Heisenberg, L.; Ribeiro, R.H. Ghosts and matter couplings in massive gravity, bigravity, and multigravity. Phys. Rev. D 2014, 90, 124042. [Google Scholar] [CrossRef]
- Noller, J.; Melville, S. The coupling to matter in massive, bi- and multi-gravity. J. Cosmol. Astropart. Phys. 2015, 2015. [Google Scholar] [CrossRef]
- Goldhaber, A.S.; Nieto, M.M. Photon and graviton mass limits. Rev. Mod. Phys. 2010, 82, 939. [Google Scholar] [CrossRef]
- Blas, D.; Pujolas, O.; Sibiryakov, S. On the Extra Mode and Inconsistency of Horava Gravity. J. High Energy Phys. 2009, 2009. [Google Scholar] [CrossRef]
- Blas, D.; Pujolas, O.; Sibiryakov, S. Comment of Strong Coupling in Extended Horava-Lifshitz Gracity. Phys. Lett. B 2010, 688, 350–355. [Google Scholar] [CrossRef]
- Blas, D.; Pujolas, O.; Sibiryakov, S. A healthy extension of Horava gravity. Phys. Rev. Lett. 2010, 104, 181302. [Google Scholar] [CrossRef] [PubMed]
- Nojiri, S.; Odintsov, S.D. Covariant renormalizable gravity and its FRW cosmology. Phys. Rev. D 2010, 81, 043001. [Google Scholar] [CrossRef]
- Cognola, G.; Myrzakulov, R.; Sebastiani, L.; Vagnozzi, S.; Zerbini, S. Covariant Horava-like and mimetic Horndeski gravity: Cosmological solutions and perturbations. Class. Quantum Gravity 2016, 33, 225014. [Google Scholar] [CrossRef]
- Casalino, A.; Rinaldi, M.; Sebastiani, L.; Vagnozzi, S. Alive and well: Mimetic gravity and a higher-order extension in light of GW170817. Class. Quantum Gravity 2019, 36, 017001. [Google Scholar] [CrossRef]
- Hohensee, M.A.; Mueller, H.; Wiringa, R.B. Equivalence Principle and Bound Kinetic Energy. Phys. Rev. Lett. 2013, 111, 151102. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bluhm, R.; Yang, Y. Gravity with Explicit Diffeomorphism Breaking. Symmetry 2021, 13, 660. https://doi.org/10.3390/sym13040660
Bluhm R, Yang Y. Gravity with Explicit Diffeomorphism Breaking. Symmetry. 2021; 13(4):660. https://doi.org/10.3390/sym13040660
Chicago/Turabian StyleBluhm, Robert, and Yumu Yang. 2021. "Gravity with Explicit Diffeomorphism Breaking" Symmetry 13, no. 4: 660. https://doi.org/10.3390/sym13040660
APA StyleBluhm, R., & Yang, Y. (2021). Gravity with Explicit Diffeomorphism Breaking. Symmetry, 13(4), 660. https://doi.org/10.3390/sym13040660