Certain Matrix Riemann–Liouville Fractional Integrals Associated with Functions Involving Generalized Bessel Matrix Polynomials
Abstract
1. Introduction
2. Some Definitions and Notations
3. Main Results
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, P.; Baleanu, D.; Chen, Y.; Momani, S.; Machado, J. Fractional Calculus: ICFDA 2018. In Proceedings of the Mathematics Statistics 303 (Hardback), Amman, Jordan, 16–18 July 2020. [Google Scholar]
- Alsaedi, A.; Alghanmi, M.; Ahmad, B.; Ntouyas, S.K. Generalized Liouville-Caputo fractional differential equations and inclusions with nonlocal generalized fractional integral and multipoint boundary conditions. Symmetry 2018, 10, 667. [Google Scholar] [CrossRef]
- Ali, R.S.; Mubeen, S.; Ahmad, M.M. A class of fractional integral operators with multi-index Mittag-Leffler k-function and Bessel k-function of first kind. J. Math. Comput. Sci. 2021, 22, 266–281. [Google Scholar] [CrossRef]
- Bansal, M.K.; Kumar, D.; Nisar, K.S.; Singh, J. Certain fractional calculus and integral transform results of incomplete ℵ-functions with applications. Math. Meth. Appl. Sci. 2020, 43. [Google Scholar] [CrossRef]
- Choi, J.; Agarwal, P. Certain integral transform and fractional integral formulas for the generalized Gauss hypergeometric functions. Abstr. Appl. Anal. 2014, 2014, 735946. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer: Berlin, Genmany, 2010. [Google Scholar]
- Ghanbari, B.; Günerhan, H.; Srivastava, H.M. An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model. Chaos Solitons Fractals 2020, 138, 109910. [Google Scholar] [CrossRef]
- Izadi, M.; Cattani, C. Generalized Bessel polynomial for multi-order fractional differential equations. Symmetry 2020, 12, 1260. [Google Scholar] [CrossRef]
- Jain, S.; Bajaj, V.; Kumar, A. Riemann Liouvelle fractional integral based empirical mode decomposition for ECG denoising. IEEE J. Biomed. Health Inform. 2018, 22, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Khalighi, M.; Eftekhari, L.; Hosseinpour, S.; Lahti, L. Three-species Lotka-Volterra model with respect to Caputo and Caputo-Fabrizio fractional operators. Symmetry 2021, 13, 368. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Rashid, S.; Hammouch, Z.; Jarad, F.; Chu, Y.-M. New estimates of integral inequalities via generalized proportional fractional integral operator with respect to another function. Fractals 2020, 28, 12. [Google Scholar] [CrossRef]
- Li, X.; Qaisar, S.; Nasir, J.; Butt, S.I.; Ahmad, F.; Bari, M.; Farooq, S.E. Some results on integral inequalities via Riemann-Liouville fractional integrals. J. Inequal. Appl. 2019, 2019, 214. [Google Scholar] [CrossRef]
- Mathai, A.M.; Haubold, H.J. An Introduction to Fractional Calculus; Nova Science Publishers: New York, NY, USA, 2017. [Google Scholar]
- Noeiaghdam, S.; Sidorov, D. Caputo-Fabrizio fractional derivative to solve the fractional model of energy supply-demand system. Math. Model. Eng. Prob. 2020, 7, 359–367. [Google Scholar] [CrossRef]
- Sene, N.; Srivastava, G. Generalized Mittag-Leffler input stability of the fractional differential equations. Symmetry 2019, 11, 608. [Google Scholar] [CrossRef]
- Yavuz, M.; Abdeljawad, T. Nonlinear regularized long-wave models with a new integral transformation applied to the fractional derivative with power and Mittag-Leffler kernel. Adv. Differ. Equ. 2020, 2020, 367. [Google Scholar] [CrossRef]
- Zayed, M.; Hidan, M.; Abdalla, M.; Abul-Ez, M. Fractional order of Legendre-type matrix polynomials. Adv. Differ. Equ. 2020, 2020, 506. [Google Scholar] [CrossRef]
- Zayed, M.; Abul-Ez, M.; Abdalla, M.; Saad, N. On the fractional order Rodrigues formula for the shifted Legendre-type matrix polynomials. Mathematics 2020, 8, 136. [Google Scholar] [CrossRef]
- Zhang, Q.; Cui, N.; Li, Y.; Duan, B.; Zhang, C. Fractional calculus based modeling of open circuit voltage of lithium-ion batteries for electric vehicles. J. Energy Storage 2020, 27, 100945. [Google Scholar] [CrossRef]
- Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics, Theory and Application; Elsevier/Academic Press: London, UK, 2017. [Google Scholar]
- Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House: Chicago, IL, USA, 2006. [Google Scholar]
- Kumar, D.; Choi, J.; Srivastava, H.M. Solution of a general family of fractional kinetic equations associated with the generalized Mittag-Leffler function. Nonlinear Funct. Anal. Appl. 2018, 23, 455–471. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Academic Publishers: Cambridge, UK, 2009. [Google Scholar]
- Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Mainardi, F.; Spada, G. Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Spec. Top. 2011, 193, 133–160. [Google Scholar] [CrossRef]
- Monje, C.A.; Chen, Y.Q.; Vinagre, B.M.; Xue, D.; Feliu, V. Fractional-Order Systems and Controls, Fundamentals and Applications; Springer: London, UK, 2010. [Google Scholar]
- PNaik, A.; Zu, J.; Owolabi, K.M. Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control. Chaos Solitons Fractals 2020, 138, 109826. [Google Scholar] [CrossRef]
- Owolabi, K.M. High-dimensional spatial patterns in fractional reaction-diffusion system arising in biology. Chaos Solitons Fractals 2020, 134, 109723. [Google Scholar] [CrossRef]
- Tadesse, H.; Suthar, D.L.; Gebru, Z. Certain integral transforms of the generalized k-Struve function. Acta Univ. Apulensis 2019, 59, 77–89. [Google Scholar] [CrossRef]
- Agarwal, P.; Chand, M.; Choi, J.; Singh, G. Certain fractional integrals and image formulas of generalized k-Bessel function. Commun. Korean Math. Soc. 2018, 33, 423–436. [Google Scholar]
- Choi, J.; Kachhia, K.B.; Prajapati, J.C.; Purohit, A.S.D. Some integral transforms involving extened generalized Gauss hypergeomtric functions. Commun. Korean Math. Soc. 2016, 31, 779–790. [Google Scholar] [CrossRef]
- Khan, N.; Usman, T.; Aman, M.; Al-Omari, S.K.; Araci, S. Computation of certain integral formulas involving generalized Wright function. Adv. Differ. Equ. 2020, 2020, 491. [Google Scholar] [CrossRef]
- Popolizio, M. Numerical solution of multiterm fractional differential equations using the matrix Mittag-Leffler functions. Mathematics 2018, 6, 7. [Google Scholar] [CrossRef]
- Abdalla, M. On Hankel transforms of generalized Bessel matrix polynomials. AIMS Mathematics 2021, 6, 6122–6139. [Google Scholar] [CrossRef]
- Abdalla, M. Special matrix functions: Characteristics, achievements and future directions. Linear Multilinear Algebra 2020, 68, 1–28. [Google Scholar] [CrossRef]
- Abdalla, M. Fractional operators for the Wright hypergeometric matrix functions. Adv. Differ. Equ. 2020, 2020, 246. [Google Scholar] [CrossRef]
- Bakhet, A.; He, F. On 2-variables Konhauser matrix polynomials and their fractional integrals. Mathematics 2020, 8, 232. [Google Scholar] [CrossRef]
- Bakhet, A.; Jiao, Y.; He, F. On the Wright hypergeometric matrix functions and their fractional calculus. Integral Transform. Spec. Funct. 2019, 30, 138–156. [Google Scholar] [CrossRef]
- Duan, J.; Chen, L. Solution of fractional differential equation systems and computation of matrix Mittag—Leffler functions. Symmetry 2018, 10, 503. [Google Scholar] [CrossRef]
- Eltayeb, H.; Kiliçman, A.; Agarwal, R.P. On integral transforms and matrix functions. Abstr. Appl. Anal. 2011, 2011, 207930. [Google Scholar] [CrossRef]
- He, F.; Bakhet, A.; Hidan, M.; Abdalla, M. Two variables Shivley’s matrix polynomials. Symmetry 2019, 11, 151. [Google Scholar] [CrossRef]
- Kargin, L.; Kurt, V. Chebyshev-type matrix polynomials and integral transforms. Hacet. J. Math. Stat. 2015, 44, 341–350. [Google Scholar] [CrossRef][Green Version]
- Khammash, G.S.; Agarwal, P.; Choi, J. Extended k-Gamma and k-Beta functions of matrix arguments. Mathematics 2020, 8, 1715. [Google Scholar] [CrossRef]
- Krall, H.L.; Frink, O. A new class of orthogonal polynomials: The Bessel polynomials. Trans. Am. Math. Soc. 1949, 65, 100–115. [Google Scholar] [CrossRef]
- Altomare, M.; Costabile, F. A new determinant form of Bessel polynomials and applications. Math. Comput. Simul. 2017, 141, 16–23. [Google Scholar] [CrossRef]
- Abdalla, M.; Abul-Ez, M.; Morais, J. On the construction of generalized monogenic Bessel polynomials. Math. Meth. Appl. Sci. 2018, 40, 1–14. [Google Scholar] [CrossRef]
- Tcheutia, D.D. Nonnegative linearization coefficients of the generalized Bessel polynomials. Ramanujan J. 2019, 48, 217–231. [Google Scholar] [CrossRef]
- Abdalla, M.; Hidan, M. Fractional orders of the generalized Bessel matrix polynomials. Eur. J. Pure Appl. Math. 2017, 10, 995–1004. [Google Scholar]
- Abdalla, M. Operational formula for the generalized Bessel matrix polynomials. J. Modern. Meth. Numer. Math. 2017, 8, 156–163. [Google Scholar] [CrossRef][Green Version]
- Shehata, A. Certain generating matrix relations of generalized Bessel matrix polynomials from the view point of Lie algebra method. Bull. Iran. Math. Soc. 2018, 44, 1025–1043. [Google Scholar] [CrossRef]
- Dunford, N.; Schwartz, J. Linear Operators Part I; Interscience: New York, NY, USA, 1963. [Google Scholar]
- Brualdi, R.; Cvetkvić, D. A Combinatorial Approach to Matrix Theory and Its Applications; Chapman and Hall/CRC: New York, NY, USA, 2009. [Google Scholar]
- Gohberg, I.; Lancaster, P.; Rodman, L. Matrix Polynomials; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Higham, N.J. Functions of Matrices Theory and Computation; SIAM: Philadelphia, PA, USA, 2008. [Google Scholar]
- Jódar, L.; Cortés, J.C. Some properties of Gamma and Beta matrix functions. Appl. Math. Lett. 1998, 11, 89–93. [Google Scholar] [CrossRef]
- Jódar, L.; Cortés, J.C. On the hypergeometric matrix function. J. Comp. Appl. Math. 1998, 99, 205–217. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Jódar, L.; Company, R.; Ponosoda, E. Orthogonal matrix polytnomials and system of second order differential equations. Differ. Equ. Dyn. Syst. 1995, 3, 269–288. [Google Scholar]
- Jódar, L.; Sastre, J. The growth of Laguerre matrix polynomials on bounded intervals. Appl. Math. Lett. 2000, 13, 21–26. [Google Scholar] [CrossRef]
- Hille, E. Lectures on Ordinary Differential Equations; Addison-Wesley: New York, NY, USA, 1969. [Google Scholar]
- Golub, G.; Loan, C.F.V. Matrix Computations; The Johns Hopkins University Press: Baltimore, MD, USA, 1989. [Google Scholar]
- Jódar, L.; Sastre, J. On Laguerre matrix polynomials. Utilitas Math. 1998, 53, 37–48. Available online: https://www.researchgate.net/publication/268636636 (accessed on 15 February 2021).
- Kishka, Z.M.; Shehata, A.; Abul-Dahab, M. The generalized Bessel matrix polynomials. J. Math. Comput. Sci. 2012, 2, 305–316. [Google Scholar]
- Casabán, M.C.; Company, R.; Egorova, V.N.; Jódar, L. Integral transform solution of random coupled parabolic partial differential models. Math. Meth. Appl. Sci. 2020, 48. [Google Scholar] [CrossRef]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Tables of Integral Transforms; McGraw-Hill Book Company: New York, NY, USA; Toronto ON, Canada; London, UK, 1954; Volume II, Available online: https://authors.library.caltech.edu/43489/7/Volume%202.pdf (accessed on 1 March 2021).
- Rainville, E.D. Special Functions; Macmillan Company: New York, NY, USA, 1960; Reprinted by Chelsea Publishing Company: Bronx, NY, USA, 1971. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Tables of Integral Transforms; McGraw-Hill Book Company: New York, NY, USA; Toronto ON, Canada; London, UK, 1954; Volume I, Available online: https://authors.library.caltech.edu/43489/1/Volume%201.pdf (accessed on 1 March 2021).
- Eslahchi, M.R.; Dehghan, M.; Ahmadi_Asl, S. The general Jacobi matrix method for solving some nonlinear ordinary differential equations. Appl. Math. Model. 2012, 36, 3387–3398. [Google Scholar] [CrossRef]
- Mathai, A.M.; Haubold, H.J. Special Functions for Applied Scientists; Springer: New York, NY, USA, 2008. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalla, M.; Akel, M.; Choi, J. Certain Matrix Riemann–Liouville Fractional Integrals Associated with Functions Involving Generalized Bessel Matrix Polynomials. Symmetry 2021, 13, 622. https://doi.org/10.3390/sym13040622
Abdalla M, Akel M, Choi J. Certain Matrix Riemann–Liouville Fractional Integrals Associated with Functions Involving Generalized Bessel Matrix Polynomials. Symmetry. 2021; 13(4):622. https://doi.org/10.3390/sym13040622
Chicago/Turabian StyleAbdalla, Mohamed, Mohamed Akel, and Junesang Choi. 2021. "Certain Matrix Riemann–Liouville Fractional Integrals Associated with Functions Involving Generalized Bessel Matrix Polynomials" Symmetry 13, no. 4: 622. https://doi.org/10.3390/sym13040622
APA StyleAbdalla, M., Akel, M., & Choi, J. (2021). Certain Matrix Riemann–Liouville Fractional Integrals Associated with Functions Involving Generalized Bessel Matrix Polynomials. Symmetry, 13(4), 622. https://doi.org/10.3390/sym13040622