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Abstract: In this paper, we first introduce the 2-variables Konhauser matrix polynomials; then,
we investigate some properties of these matrix polynomials such as generating matrix relations,
integral representations, and finite sum formulae. Finally, we obtain the fractional integrals of the
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1. Introduction

Special functions play a very important role in analysis, physics, and other applications,
and solutions of some differential equations or integrals of some elementary functions can be expressed
by special functions. In particular, the family of special polynomials is one of the most useful and
applicable family of special functions. The Konhauser polynomials which were first introduced by
J.D.E. Konhauser [1] include two classes of polynomials Yα

n (x; k) and Zα
n(x; k), where Yα

n (x; k) are
polynomials in x and Zα

n(x; k) are polynomials in xk, α > −1 and k ∈ Z+. Explicit expressions for the
polynomials Zα

n(x; k) are given by

Zα
n(x; k) =

Γ(α + kn + 1)
n!

n

∑
r=0

(−1)r
(

n
r

)
xkr

Γ(α + kr + 1)
, (1)

where Γ(·) is the classical Gamma function and for the polynomials Yα
n (x; k), Carlitz [2] subsequently

showed that

Yα
n (x; k) =

1
n!

n

∑
r=0

xr

r!

r

∑
s=0

(−1)s
(

r
s

)( s + α + 1
k

)
n
, (2)

where (a)n is Pochhammer’s symbol of a as follows:

(a)n =

{
a(a + 1)(a + 2) . . . (a + n− 1), n ≥ 1,
1, n = 0.

(3)
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It is easy to verify that the polynomials Yα
n (x; k) and Zα

n(x; k) are biorthogonal with respect to the
weight function w(x) = xαe−x over the interval (0, ∞), which means

∫ ∞

0
xαe−xYα

i (x; k)Zα
j (x; k)dx =

Γ(kj + α + 1)
j!

δij, (4)

where α > −1, k ∈ Z+ and δij is the Kronecker delta.
The Laguerre polynomials Lα

n(x) are defined as (see, e.g., [3])

Lα
n(x) =

Γ(α + n + 1)
Γ(n + 1)

n

∑
r=0

(−1)r
(

n
r

)
xr

Γ(α + r + 1)
. (5)

For p, q ∈ N, we can define the general hypergeometric functions of p-numerator and
q-denominator by

pFq

[
α1, α2, . . . , αp

β1, β2, . . . , βq
; x

]
=

∞

∑
n=0

(α1)n(α2)n . . . (αp)n

(β1)n(β2)n . . . (βq)n

xn

n!
, (6)

such that β j 6= 0,−1,−2, . . . ; j = 1, 2, . . . , q. Then, according to [3], we can rewrite Lα
n(x) as

Lα
n(x) =

(α + 1)n

n! 1F1

[
−n

α + 1
; x

]
. (7)

For k = 1, we note that the Konhauser polynomials (1) and (2) reduce to the Laguerre Polynomials
Lα

n(x) and their special cases; when k = 2, the case was encountered earlier by Spencer and Fano [4] in
certain calculations involving the penetration of gamma rays through matter and was subsequently
discussed in [5].

On the other hand, the matrix theory has become pervasive to almost every area of mathematics,
especially in orthogonal polynomials and special functions. The special matrix functions appear in
the literature related to statistics [6], Lie theory [7], and in connection with the matrix version of
Laguerre, Hermite, and Legendre differential equations and the corresponding polynomial families
(see, e.g., [8–10]). In the past few years, the extension of the classical Konhauser polynomials to
the Konhauser matrix polynomials of one variable has been a subject of intensive studies [11–14].
Recently, many authors (see, e.g., [15–18]) have proposed the generating relations of Konhauser matrix
polynomials of one variable from the Lie algebra method point of view and found some properties
of Konhauser matrix polynomials of one variable via the Lie algebra technique; they also obtained
operational identities for Laguerre–Konhauser-type matrix polynomials and their applications for the
matrix framework.

Some studies have been presented on polynomials in two variables such as 2-variables Shivley’s
matrix polynomials [19], 2-variables Laguerre matrix polynomials [20], 2-variables Hermite generalized
matrix polynomials [21–24], 2-variables Gegenbauer matrix polynomials [25], and the second kind of
Chebyshev matrix polynomials of two variables [26].

The purpose of the present work is to introduce and study 2-variables Konhauser matrix polynomials
and find the hypergeometric matrix function representations; we try to establish some basic properties
of these polynomials which include generating matrix functions, finite sum formulae, and integral
representations, and we will also discuss the fractional integrals of the 2-variables Konhauser
matrix polynomials.

The rest of this paper is structured as follows. In the next section, we give basic definitions and
previous results to be used in the following sections. In Section 3, we introduce the definition of
2-variables Konhauser matrix polynomials for parameter matrices A and B and some generating matrix
relations involving 2-variables Konhauser matrix polynomials deriving the integral representations.
Finally, we provide some results on the fractional integrals of 2-variables Konhauser matrix polynomials
in Section 4.



Mathematics 2020, 8, 232 3 of 12

2. Preliminaries

In this section, we give the brief introduction related to Konhauser matrix polynomials and recall
some previously known results.

Let CN×N be the vector space of N-square matrices with complex entries; for any matrix A ∈ CN×N ,
its spectrum σ(A) is the set of all eigenvalues of A,

α(A) = max{Re(z) : z ∈ σ(A)}, β(A) = min{Re(z) : z ∈ σ(A)}. (8)

A square matrix A ∈ CN×N is said to be positive stable if and only if β(A) > 0. Furthermore, the
identity matrix and the null matrix or zero matrix in CN×N will be symbolized by I and 0, respectively.
If Φ(z) and Ψ(z) are holomorphic functions of the complex variable z, which are defined as an open
set Ω of the complex plane and A is a matrix in CN×N with σ(A) ⊂ Ω, then, from the properties of the
matrix functional calculus [27,28], we have

Φ(A)Ψ(A) = Ψ(A)Φ(A). (9)

Furthermore, if B ∈ CN×N is a matrix for which σ(B) ⊂ Ω and also if AB = BA, then

Φ(A)Ψ(B) = Ψ(B)Φ(A). (10)

Let A be a positive stable matrix in CN×N . Then, Γ(A) is well defined as

Γ(A) =
∫ ∞

0
tA−Ie−tdt, (11)

where tA−I = exp((A− I) ln t). Then, the matrix Pochhammer symbol (A)n of A is denoted as follows
(see, e.g., [29–31]):

(A)n =

{
A(A + I)...(A + (n− 1)I) = Γ−1(A)Γ(A + nI), n ≥ 1,
I, n = 0,

(12)

The Laguerre matrix polynomials are defined by Jódar et al. [8]

L(A,λ)
n (x) =

n

∑
k=0

(−1)kλk

k!(n− k)!
(A + I)n[(A + I)k]

−1xk, (13)

where A ∈ CN×N is a matrix such that −k 6∈ σ(A), ∀k ∈ Z+, (A + I)k are given by Equation (12) and
λ is a complex number with Re(λ) > 0.

For p, q ∈ N, 1 ≤ i ≤ p, 1 ≤ j ≤ q, if Ai, Bj ∈ CN×N are matrices such that Bj + kI are invertible
for all integers k ≥ 0, the generalized hypergeometric matrix functions are defined as [32]

pFq

[
A1, A2, . . . , Ap

B1, B2, . . . , Bq
; x

]
= ∑

n≥0

(A1)n(A2)n . . . (Ap)n[(B1)n]−1[(B2)n]−1 . . . ([Bp)n]−1

n!
xn. (14)

It follows that, for λ = 1 in (13), we have

LA
n (x) =

(A + I)n

n! 1F1

[
−nI,
A + I

; x

]
. (15)

For commuting matrices Ai, Bi, Ci, Di, Ei and Fi in CN×N , we define the Kampé de Fériet matrix
series as [32]
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Fm1,n1,l1
m2,n2,l2

[
A, B, C
D, E, F

; x, y

]
=

∑
m,n≥0

m1

∏
i=1

(Ai)m+n

n1

∏
i=1

(Bi)m

l1

∏
i=1

(Ci)n

m2

∏
i=1

[(Di)m+n]
−1

n2

∏
i=1

[(Ei)m]
−1

l2

∏
i=1

[(Fi)n]
−1 xmyn

m!n!
,

(16)

where A abbreviates the sequence of matrices A1, ...., Am1 , etc. and Di + kI, Ei + kI and Fi + kI are
invertible for all integers k ≥ 0.

If A ∈ CN×N is a matrix satisfying the condition

Re(z) > −1, ∀z ∈ σ(A), (17)

and λ is a complex numbers with Re(λ) > 0, we recall the following explicit expression for the
Konhauser matrix polynomials (see, e.g., [11])

Z(A,λ)
n (x, k) =

Γ(A + (kn + 1)I)
n!

n

∑
r=0

(−1)r
(

n
r

)
Γ−1(A + (kr + 1)I)(λx)kr, (18)

and

Y(A,λ)
n (x; k) =

1
n!

n

∑
r=0

(λx)r

r!

r

∑
s=0

(−1)s
(

r
s

)(A + (s + 1)I
k

)
n
, (19)

which are biorthogonal with respect to matrix weight function w(x) = xAe−λx over the interval (0, ∞).

3. 2-Variables Konhauser Matrix Polynomials

In this section, we first introduce the 2-variables Konhauser matrix polynomials with parameter
matrices A and B; then, we get the hypergeometric matrix function representations, generating
matrix functions, finite summation formulas, and related results for the 2-variables Konhauser matrix
polynomials.

Definition 1. Let A, B ∈ CN×N be matrices satisfying the condition (17). Then, for k, l ∈ Z+, the 2-variables
Konhauser matrix polynomials Z(A,B,λ,ρ)

n (x, y, k, l) are defined as follows:

Z(A,B,λ,ρ)
n (x, y, k, l) =

Γ(A + (kn + 1)I)Γ(B + (ln + 1)I)
(n!)2

×
n

∑
r=0

n−r

∑
s=0

(−n)r+s (λx)ks(ρy)lr

r!s!
Γ−1(A + (ks + 1)I)Γ−1(B + (lr + 1)I),

(20)

where λ and ρ are complex numbers with Re(λ) > 0 and Re(ρ) > 0.

Remark 1. Furthermore, we note the following special cases of the 2-variables Konhauser matrix polynomials
Z(A,B,λ,ρ)

n (x, y, k, l) as follows:

i. Letting l = 1, B = 0 and y = 0 in (20), we get the Konhauser matrix polynomials defined in (18);
ii. Letting k = l = 1 and ρ = 1 in (20), we get the 2-variables analogue of Laguerre’s matrix polynomials
L(A,B,λ)

n (x, y) as follows:

Z(A,B,λ,1)
n (x, y, 1, 1) =

(A + I)n(B + I)n

(n!)2

n

∑
r=0

n−r

∑
s=0

(−n)r+s (λx)s(y)r

r!s!
[
(A + I)s(B + I)r

]−1; (21)

iii. Letting k = l = 1, B = 0 and y = 0 in (20), we obtain the Laguerre’s matrix polynomials L(A,λ)
n (x)

defined in (13);
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iv. Letting A = α ∈ C1×1 and B = β ∈ C1×1 in (20), we find the scaler 2-variables Konhauser polynomials
(see, e.g., [33]);

v. Letting A = α ∈ C1×1, and B = 0 in (20), we find Konhauser polynomials defined in (1).

3.1. Hypergeometric Representation

Now, by using (16) and (20), we obtain the hypergeometric matrix function representations

Z(A,B,λ,ρ)
n (x, y, k, l) =

(A + I)kn(B + I)ln
(n!)2 F1

k,l

[ −nI
∆(k; A + I), ∆(l; B + I)

; (
λx
k
)k, (

ρy
l
)l
]
, (22)

where ∆(k; A) abbreviates the array of k parameters such that

∆(k; A) = (
A
k
)(

A + I
k

)(
A + 2I

k
) . . . (

A + (k− 1)I
k

), k ≥ 1, (23)

and F1
k,l is defined in (16).

Remark 2. If A ∈ CN×N is a matrix satisfying the condition (17), letting B = 0 and y = 0 in (22), we obtain

Z(A,0,λ)
n (x, 0; k) =

(A + I)kn
n! 1Fk

[
−nI

∆(k; A + I)
; (

λx
k
)k

]
= Z(A,λ)

n (x; k), (24)

where Z(A,λ)
n (x; k) are Konhauser matrix polynomials in [11] and 1Fk is hypergeometric matrix function of

1-numerator and k-denominator defined in (14).

Remark 3. If A ∈ CN×N is a matrix satisfying the condition (17), let k = 1, B = 0 and y = 0 in (22), then
we get

Z(A,λ)
n (x; 1) =

(A + I)n

n! 1F1

[
−nI,
A + I

; x

]
= LA

n (x), (25)

where LA
n (x) are the Laguerre’s matrix polynomials defined in (15).

3.2. Generating Matrix Relations for the 2-Variables of Konhauser Matrix Polynomials

Generating matrix relations always play an important role in the study of polynomials, first, we
give some generating matrix relations for the 2-variables of Konhauser matrix polynomials as follows:

Theorem 1. Letting A, B ∈ CN×N be matrices satisfying the condition (17), we obtain the explicit formulae of
matrix generating relations for the 2-variables Konhauser matrix polynomials as follows:

∞

∑
n=0

Z(A,B,λ,ρ)
n (x, y, k, l)[(A + I)kn]

−1[(B + I)ln]−1(n!tn)

= et
0Fk

[
−

∆(k; A + I)
; (
−λx

k
)k

]
0Fl

[
−

∆(p; B + I)
; (
−ρy

l
)l

]
,

(26)

where 0Fk and 0Fl are hypergeometric matrix functions of 0-numerator and k, l-denominator as (14), ∆(k; A + I)
and ∆(l; B + I) are defined as (23), and the short line "−" means that the number of parameters is zero.
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Proof. From Equation (20), we have

∞

∑
n=0

Z(A,B,λ,ρ)
n (x, y, k, l)[(A + I)kn]

−1[(B + I)ln]−1(n!tn)

=
∞

∑
n=0

n!
n

∑
r=0

n−r

∑
s=0

(−n)r+s(λx)ks(ρy)lr

r!s!(n!)2 [(A + I)ks]
−1[(B + I)lr]−1tn

=
∞

∑
n=0

tn

n!

∞

∑
s=0

(−1)s(λx)ks

s!
[(A + I)ks]

−1ts
∞

∑
r=0

(−1)r(ρy)lr

r!
[(B + I)lr]

−1tr,

(27)

by using

(A)km = k
km (A

k
)

m

(A + I
k

)
m . . .

(A + (k− 1)I
k

)
m,

we get

∞

∑
n=0

Z(A,B,λ,ρ)
n (x, y, k, l)[(A + I)kn]

−1[(B + I)ln]−1(n!tn)

=
∞

∑
n=0

tn

n!

∞

∑
s=0

(−1)s(λx)ks

kkss!

[ k

∏
m=1

(
A + mI

k
)s

]−1
ts

∞

∑
r=0

(−1)r(ρy)lr

llrr!

[ l

∏
n=1

(
B + nI

l
)r

]−1
tr

= et
0Fk

[
−

∆(k; A + I)
; (
−λx

k
)k

]
0Fl

[
−

∆(l; B + I)
; (
−ρy

l
)l

]
.

(28)

This completes the proof.

For a matrix E in CN×N , we can easily obtain the following generating relations for the 2-variables
Konhauser matrix polynomial similar to Theorem 1

∞

∑
n=0

(E)n[(A + I)kn]
−1[(B + I)ln]−1(n!tn)

= (1− t)−EF1
k,l

[
−E

∆(k; A + I), ∆(l; B + I)
;

t
t− 1

(
λx
k
)k,

t
t− 1

(
ρy
l
)l

]
,

(29)

where F1
k,p are defined in Equation (16), ∆(k; A + I) and ∆(l; B + I) are defined as Equation (23).

Corollary 1. Letting A, B ∈ CN×N be matrices satisfying the condition (17), the following generating matrix
relations of the 2-variables Konhauser matrix polynomials hold:

∞

∑
n=0

Z(A,B,λ,ρ)
n (x, y, k, l)Γ−1(A + (nk + 1)I)Γ−1(B + (nl + 1)I)(n!tn)

= et Γ−1(A + I) Γ−1(B + I) 0Fk

[
−

∆(k; A + I)
; (
−λx

k
)k

]
0Fl

[
−

∆(l; B + I)
; (
−ρy

l
)l

]
,

(30)

where 0Fk and 0Fl are hypergeometric matrix functions of 0-numerator and k,l-denominator as (14).
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Corollary 2. Letting A, B, and E be matrices in CN×N satisfying the condition (17), we give explicit formulae
of matrix generating relations for the 2-variables Konhauser matrix polynomials as follows:

∞

∑
n=0

(E)nZ(A,B,λ,ρ)
n (x, y, k, l)Γ−1(A + (nk + 1)I)Γ−1(B + (nl + 1)I)(n!tn)

= (1− t)−E Γ−1(A + I) Γ−1(B + I)F1
k,l

[
−E

∆(k; A + I), ∆(l; B + I)
;

t
t− 1

(
λx
k
)k,

t
t− 1

(
ρy
l
)l

]
.

(31)

Considering the double series,

∞

∑
n=0

∞

∑
m=0

[(m + n)!]2

n! m!
Z(A,B,λ,ρ)

n (x, y, k, l)[(A + I)k(m+n)]
−1[(B + I)l(m + n)]−1σmτn

=
∞

∑
n=0

n!Z(A,B,λ,ρ)
n (x, y, k, l)τn[(A + I)kn]

−1[(B + I)ln]−1
1F0

[
−nI
− ;

−σ

τ

]

=
∞

∑
n=0

n!Z(A,B,λ,ρ)
n (x, y, k, l)[(A + I)kn]

−1[(B + I)ln]−1(σ + τ)n.

(32)

Now, by making use of Theorem 1, we find

∞

∑
n=0

∞

∑
m=0

[(m + n)!]2

n! m!
Z(A,B,λ,ρ)

n (x, y, k, l)[(A + I)k(m+n)]
−1[(B + I)l(m + n)]−1σmτn

= eσ+τ
0Fk

[
−

∆(k; A + I)
; (
−λx

k
)k(σ + τ)

]
0Fl

[
−

∆(l; B + I)
; (
−ρy

l
)l(σ + τ)

]
.

(33)

Here, Equation (33) may be regarded as a double generating matrix relations for (20).

Remark 4. For A in CN×N , letting k = 1, B = 0 and y = 0 in (33), we have

∞

∑
n=0

(
m + n

n

)
[(A + I)(m+n)]

−1LA
m+n(x) tn

=
∞

∑
n=m

(−1)nm![(A + I)n]−1xn

(n−m)!n! 1F1

[
−(n + 1)I,
(n−m + 1)I

; t

]

=
∞

∑
n=m

∞

∑
j=0

(−x)nn!tn−m[(A + I)n]−1(n + 1)jtj

m!(n−m)!n!(n−m + 1)j!

=
∞

∑
n=0

∞

∑
j=0

(−x)n(n + 1)j(A + I)n]−1tj

(1)jn!j!
,

(34)

we find generating matrix relations of the Laguerre’s matrix polynomials.

3.3. Some Properties of the 2-Variables Konhauser Matrix Polynomials

For the finite sum property of the 2-variables Konhauser matrix polynomials Z(A,B,λ,ρ)
n (x, y, k, l),

we get the generating relations together as follows:

et
0Fk

[
−

∆(k; A + I)
; (
−λxw

k
)kt

]
0Fl

[
−

∆(l; B + I)
; (
−ρyw

l
)lt

]

= e(1−wk)tewkt
0Fk

[
−

∆(k; A + I)
; (
−λxw

k
)kt

]
0Fl

[
−

∆(l; B + I)
; (
−ρyw

l
)lt

]
,

(35)
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and
n

∑
r=0

Z(A,B,λ,ρ)
n (xw, yw, k, k)[(A + I)kn]

−1[(B + I)kn]
−1tnn!

=
( ∞

∑
n=0

1− wkntn

n!

)( ∞

∑
n=0

Z(A,B,λ,ρ)
n (x, y, k, k)wkn[(A + I)kn]

−1[(B + I)kn]
−1tnn!

)
.

(36)

By comparing the coefficients of tn on both sides, we have

Z(A,B,λ,ρ)
n (xw, yw, k, k)

=
n

∑
r=0

r!wkr(1− wk)n−r

n!(n− r)!
[(A + I)kr]

−1[(B + I)kr]
−1(A + I)kn(B + I)knZ(A,B,λ,ρ)

n (x, y, k, k).
(37)

The integral representations for the 2-variables Konhauser matrix polynomials are derived in the
following theorem.

Theorem 2. Letting A, B ∈ CN×N be matrices satisfying the condition (17), and, if
∣∣ t

λx

∣∣ < 1,
∣∣ v

ρy

∣∣ < 1,

then we have the integral representation of the 2-variables Konhauser matrix polynomials Z(A,B,λ,ρ)
n (x, y, k, l)

as follows:

Z(A,B,λ,ρ)
n (x, y, k, l) =

Γ(A + (kn + 1)I)Γ(B + (ln + 1)I)
(n!)2(2πi)2

×
∫

c1

∫
c2

(
tkvl − (λx)kvl − (ρy)ktl)net+v t−(A+(kn+1)I) v−(B+(ln+1)I)dtdv,

(38)

where c1, c2 are the paths around the origin in the positive direction, beginning at and returning to positive
infinity with respect for the branch cut along the positive real axis.

Proof. The right side of the above formulae are deformed into

Γ(A + (kn + 1)I)Γ(B + (ln + 1)I)
(n!)2

n

∑
r=0

n−r

∑
s=0

(−n)r+s(λx)kr(ρy)lr

r!s!

× 1
2πi

∫
c1

t−(A+(ks+1)I)etdt × 1
2πi

∫
c2

v−(B+(lr+1)I)evdv,

(39)

and using the integral representation of the reciprocal Gamma function, which are given in [34]

1
Γ(z)

=
1

2πi

∫
c

ett−zdt, (40)

where c is the path around the origin in the positive direction, beginning at and returning to positive
infinity with respect for the branch cut along the positive real axis. Thus, from Equation (40), we obtain
the following integral matrix functional

Γ−1(A + (kn + 1)I) =
1

2πi

∫
c1

ett−(A+(kn+1)I)dt. (41)

By Equation (41), we can transfer (39) to

Γ(A + (kn + 1)I)Γ(B + (ln + 1)I)
(n!)2 ×

n

∑
r=0

n−r

∑
s=0

(−n)r+s(λx)kr(ρy)lr

r!s!
Γ−1(A + (ks + 1)I)Γ−1(B + (kr + 1)I)

= Z(A,B,λ,ρ)
n (x, y, k, l).

(42)
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This completes the proof of the theorem.

4. Fractional Integrals of the 2-Variable Konhauser Matrix Polynomials

In this section, we study the fractional integrals of the Konhauser matrix polynomials of one and
two variables. The fractional integrals of Riemann–Liouville operators of order µ and x > 0 are given
by (see [35,36])

(Iµ
a f )(x) =

1
Γ(µ)

∫ x

a
(x− t)µ−1 f (t)dt, Re(µ) > 0. (43)

Recently, the authors (see, e.g., [28]) introduced the fractional integrals with matrix parameters
as follows: suppose A ∈ CN×N is a positive stable matrix and µ ∈ C is a complex number satisfying
the condition Re(µ) > 0. Then, the Riemann–Liouville fractional integrals with matrix parameters of
order µ are defined by

Iµ(xA) =
1

Γ(µ)

∫ x

0
(x− t)µ−1tAdt. (44)

Lemma 1. Supposing that A ∈ CN×N is a positive stable matrix and µ ∈ C is a complex number satisfying
the condition Re(µ) > 0, then the Riemann–Liouville fractional integrals with matrix parameters of order µ are
defined and we have (see, e.g., [28])

Iµ(xA−I) = Γ(A)Γ−1(A + µI)xA+(µ−1)I . (45)

Theorem 3. If A ∈ CN×N is a matrix satisfying the condition (17), then the Riemann–Liouville fractional
integrals of Konhauser matrix polynomials of one variable are as follows:

Iµ
[
(λx)AZ(A,λ)

n (x, k)
]
= Γ−1(A + (kn + µ + 1)I)Γ(A + (kn + 1)I)(λx)A+µI Z(A+µI,λ)

n (x, k), (46)

where λ is a complex numbers with Re(λ) > 0, and k ∈ Z+.

Proof. From Equation (44), we find

Iµ
[
(λx)AZ(A,λ)

n (x, k)
]
=
∫ x

0

(
λ(x− t)

)µ−1

Γ(µ)
tAZ(A,λ)

n (t, k)dt

=
Γ(A + (kn + 1)I)

Γ(µ)

n

∑
r=0

(−1)r

r!(n− r)!
Γ−1(A + (kr + 1)I)

∫ x

0
(λx)A+krI(λ(x− t)

)µ−1dt

= Γ(A + (kn + 1)I)
n

∑
r=0

(−1)r

r!(n− r)!
(λx)A+(kr+µ)I Γ−1(A + (kr + µ + 1)I),

(47)

and we can write

Iµ
[
(λx)AZ(A,λ)

n (x, k)
]
= Γ−1(A + (kn + µ + 1)I)Γ(A + (kn + 1)I)(λx)A+µI Z(A+µI,λ)

n (x, k). (48)

The 2-variables analogue of Riemann–Liouville fractional integrals Iν,µ may be defined as follows

Definition 2. Letting A, B ∈ CN×N be positive stable matrices, if Re(ν) > 0 and Re(µ) > 0, then the
2-variables Riemann–Liouville fractional integrals of orders ν, µ can be defined as follows:

Iν,µ
[

xAyB
]
=

1
Γ(ν)Γ(µ)

∫ x

0

∫ y

0
(x− u)ν−1(y− v)µ−1uAvBdudv. (49)
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Theorem 4. Letting A, B ∈ CN×N be matrices satisfying the condition (17), Re(λ) > 0, Re(ρ) > 0, then, for
the Riemann–Liouville fractional integral of a 2-variables Konhauser matrix polynomial, we have the following:

Iν,µ
[
(λx)A(ρy)BZ(A,B,λ,ρ)

n (x, y, k, l)
]

= Γ−1(A + (kn + ν + 1)I)Γ−1(B + (ln + µ + 1)I)Γ(A + (kn + 1)I)

Γ(B + (ln + 1)I)(λx)A+νI(ρy)B+µI Z(A+νI,B+µI,λ,ρ)
n (x, y, k, l),

(50)

where λ and ρ are complex numbers and k, l ∈ Z+.

Proof. By using Equation (49), we obtain

Iν,µ
[
(λx)A(ρy)BZ(A,B,λ,ρ)

n (x, y, k, l)
]
=

1
Γ(ν)Γ(µ)

×
∫ x

0

∫ y

0

(
λ(x− u)

)ν−1(
ρ(y− v)

)µ−1
(λu)A(ρv)BZ(A,B,λ,ρ)

n (u, v, k, l)dudv.
(51)

By putting u = xt and v = yw, we get

Iν,µ
[
(λx)A(ρy)BZ(A,B,λ,ρ)

n (x, y, k, l)
]
=

(λx)A+νI(ρy)B+µI

Γ(ν)Γ(µ)

×
∫ 1

0

∫ 1

0
(λt)A(ρw)B(λ(1− t)

)ν−1(
ρ(1− w)

)µ−1Z(A,B,λ,ρ)
n (xt, yw, k, l)dtdw,

(52)

from definition (20), we have

Iν,µ
[
(λx)A(ρy)BZ(A,B,λ,ρ)

n (x, y, k, l)
]

=
Γ(A + (kn + 1)I)Γ(B + (ln + 1)I)(λx)A+νI(ρy)B+µI

(n!)2Γ(ν)Γ(µ)
n

∑
r=0

n−r

∑
s=0

(−n)r+s (λx)ks(ρy)lr

r!s!
Γ−1(A + (ks + 1)I)Γ−1(B + (lr + 1)I).

×
∫ 1

0
(λt)A+ksI(λ(1− t)

)ν−1dt
∫ 1

0
(ρw)B+lrI(ρ(1− w)

)µ−1dw,

(53)

and
Iν,µ
[
(λx)A(ρy)BZ(A,B,λ,ρ)

n (x, y, k, l)
]

=
Γ(A + (kn + 1)I)Γ(B + (ln + 1)I)(λx)A+νI(ρy)B+µI

(n!)2Γ(ν)Γ(µ)
n

∑
r=0

n−r

∑
s=0

(−n)r+s (λx)ks(ρy)lr

r!s!
Γ−1(A + (ks + ν + 1)I)Γ−1(B + (lr + µ + 1)I).

(54)

We thus arrive at

Iν,µ
[
(λx)A(ρy)BZ(A,B,λ,ρ)

n (x, y, k, l)
]

= Γ−1(A + (kn + ν + 1)I)Γ−1(B + (ln + µ + 1)I)Γ(A + (kn + 1)I)

Γ(B + (ln + 1)I)(λx)A+νI(ρy)B+µI Z(A+νI,B+µI,λ,ρ)
n (x, y, k, l).

(55)

This completes the proof of Theorem 4.
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