# Reparametrization Invariance and Some of the Key Properties of Physical Systems

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

- 1.
- How do we construct such models?
- 2.
- What is the mathematical framework and what are the implications of such models?
- 3.
- What is the meaning/role of an arbitrarily time-parameter $\lambda $ for a particular process?

## 2. Justifying the Reparametrization Invariance (RI)

#### 2.1. Relativistic Particle Lagrangian

#### 2.2. Equivalence of Homogeneous Lagrangians

#### 2.3. Homogeneous Lagrangians of First Order

#### 2.4. Pros and Cons of Homogeneous Lagrangians of the First Order

- (1)
- First of all, the action $S=\int L(x,\frac{dx}{d\lambda})d\lambda $ is a reparametrization invariant.
- (2)
- For any Lagrangian $L(x,v=\frac{dx}{dt})$ one can construct a reparametrization-invariant Lagrangian by enlarging the configuration space $\left\{x\right\}$ to an extended configuration space—the space-time $\{ct,x\}$ [2,21,22]. However, it is an open question whether there is a full equivalence of the corresponding Euler–Lagrange equations.
- (3)
- Parameterization-independent path-integral quantization could be possible since the action S is reparametrization invariant [41].
- (4)
- The reparametrization invariance may help in dealing with singularities [26].
- (5)

- (1)
- (2)
- It follows that the Legendre transformation ($T\left(M\right)\leftrightarrow {T}^{*}\left(M\right)$), which exchanges velocity and momentum coordinates $(x,v)\leftrightarrow (x,p)$, is problematic [20].
- (3)

## 3. One-Time Physics, Causality, Arrow of Time, and the Maximum Speed of Propagation

#### 3.1. One-Time Physics, Maximum Speed of Propagation, and the Space-Time Metric Signature

- I.
- Gravity-like term $\sqrt{g(\overrightarrow{v},\overrightarrow{v})}$ is always present in the matter Lagrangian.
- II.
- The corresponding matter Lagrangian is a real-valued function.

- (1)
- No time coordinates will contradict $g(\overrightarrow{v},\overrightarrow{v})\ge 0$:$$g(\overrightarrow{v},\overrightarrow{v})=-\sum _{\alpha}{\left(\right)}^{{v}^{\alpha}}2$$
- (2)
- Two or more time coordinates—unconstrained spacial velocity ${\overrightarrow{v}}_{space}$:$$g(\overrightarrow{v},\overrightarrow{v})={\left({v}^{0}\right)}^{2}+{\left({v}^{1}\right)}^{2}-\sum _{\alpha =2}^{n}{\left(\right)}^{{v}^{\alpha}}2$$
- (3)
- Only one time coordinate enforces finite spacial velocity ${\overrightarrow{v}}_{space}$:$$g(\overrightarrow{v},\overrightarrow{v})={\left({v}^{0}\right)}^{2}-\sum _{\alpha =1}^{n}{\left(\right)}^{{v}^{\alpha}}2$$

#### 3.2. Causality, the Common Arrow of Time, and the Non-Negativity of the Mass

## 4. From Lagrangian to Hamiltonian Mechanics

#### 4.1. Lagrangian Mechanics

#### 4.2. Hamiltonian Formalism

#### 4.3. Problems with the Hamiltonian Function and the Legendre Transform for RI Systems

## 5. From Classical to Quantum Mechanics

#### 5.1. Canonical Quantization

#### 5.2. Extending the Poisson Bracket

#### 5.3. Implementing the Hamiltonian Constraint

#### 5.4. The Schrödinger Equation

## 6. The Meaning of $\mathit{\lambda}$ and the Role of the Hamiltonian Constraint

#### 6.1. The Picture from Lagrangian Mechanics’ Point of View

#### 6.1.1. The Proper Length Parametrization and the Onset of Quantum Length Scale

#### 6.1.2. The Proper Time Parametrization and the Onset of Quantum Time Scale

#### 6.2. The Picture from Hamiltonian Mechanics Point of View

#### 6.2.1. Hamiltonian Constraint for $\lambda $ in Coordinate-Time Role ($\lambda =t$)

#### 6.2.2. Hamiltonian Constraint for $\lambda $ in the Proper-Time Role ($\lambda =\tau $)

#### 6.2.3. The Quantum Mechanics Picture and the Positivity of the Energy

**the positivity of the norm now requires positivity of the energy**$E={p}_{0}>0$ since $\varphi \left(t\right)\to {p}_{0}$. In the rest frame this should correspond to the rest mass of the particle.

#### 6.2.4. The Rate of Change along a Coordinate and Normalizability of the Wave Function

**Now the normalizability of the wave function is related to the usual spatial localization of the physically relevant states**$\psi $ that was modulated by the factor $\sqrt{\varphi}$.

#### 6.2.5. The Notion of Time Reversal

#### 6.3. The Meaning of $\lambda $ and error in the Extended Phase-Space

## 7. Conclusions and Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A. The Relativistic Particle

#### Appendix A.1. Coordinate-Time Parametrization

#### Appendix A.1.1. Lagrangian Formulation

#### Appendix A.1.2. Hamiltonian Formulation

#### Appendix A.2. Proper-Time Parametrization

#### Appendix A.2.1. Lagrangian Formulation

#### Appendix A.2.2. Hamiltonian Formulation

#### Appendix A.3. Extended Hamiltonian Framework

#### Appendix A.3.1. Proper-Time Parametrization

#### Appendix A.3.2. Canonical Quantization

## References

- Anderson, E. The Problem of Time: Quantum Mechanics Versus General Relativity. Fundamental Theories of Physics; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
- Goldstein, H. Classical Mechanics. Addison-Wesley Series in Physics; Addison-Wesley Publishing Company: Boston, MA, USA, 1980; pp. 1–672. [Google Scholar]
- Mattingly, D. Modern Tests of Lorentz Invariance. Living Rev. Relativ.
**2005**, 8, 5. [Google Scholar] [CrossRef][Green Version] - Pauli, W. Theory of Relativity; Pergamon Press: New York, NY, USA, 1958; pp. 1–272. [Google Scholar]
- Gryb, S. A definition of background independence. Class. Quantum Gravity
**2010**, 27, 215018. [Google Scholar] [CrossRef][Green Version] - Gueorguiev, V.G. Matter, Fields, and Reparametrization-Invariant Systems. In Geometry, Integrability & Quantization; Mladenov, I.M., Naber, G.L., Eds.; Coral Press: Sofia, Bulgaria, 2003; Volume IV, pp. 168–177. [Google Scholar]
- Gueorguiev, V.G. The Relativistic Particle and its d-brane Cousins. In Proceedings of the 1st Advanced Research Workshop on Gravity Astrophysics and Strings at the Black Sea (GAS@BS 2002), Kiten, Bulgaria, 10–16 June 2002; Fiziev, P.P., Todorov, M.D., Eds.; St. Kliment Ohridski University Press: Sofia, Bulgaria, 2003; pp. 148–158. [Google Scholar]
- Gueorguiev, V.G. Aspects of Diffeomorphism Invariant Theory of Extended Objects. In Quantum Theory and Symmetries; Argyres, P.C., Hodges, T.J., Mansouri, F., Scanio, J.J., Suranyi, P., Wijewardhana, L.C.R., Eds.; World Scientific: Singapore, 2004; pp. 234–242. [Google Scholar] [CrossRef][Green Version]
- Gueorguiev, V.G.; Maeder, A. Geometric Justification of the Fundamental Interaction Fields for the Classical Long-Range Forces. Symmetry
**2021**, 13, 379. [Google Scholar] [CrossRef] - Gueorguiev, V.G. Aspects of Diffeomorphism Invariant Theory of Extended Objects I: The Relativistic Particle and its d-brane Cousins. arXiv
**2005**, arXiv:math-ph/0512082. [Google Scholar] - Borštnik, M.N.; Nielsen, H.B. Why odd-space and odd-time dimensions in even-dimensional spaces? Phys. Lett. B
**2000**, 486, 314–321. [Google Scholar] [CrossRef][Green Version] - Van Dam, H.; Ng, Y.J. Why/3 + 1 metric rather than/4 + 0 or/2 + 2? Phys. Lett. B
**2001**, 520, 159–162. [Google Scholar] [CrossRef][Green Version] - Saçlioglu, C. Fake R
^{4}s, Einstein spaces and Seiberg-Witten monopole equations. Class. Quantum Gravity**2001**, 18, 3287–3292. [Google Scholar] [CrossRef][Green Version] - Kilmister, C.W. Lagrangian Dynamics: An Introduction for Students; Plenum Press: New York, NY, USA, 1967; pp. 1–136. [Google Scholar]
- Cariñena, J.F.; Ibort, L.A.; Marmo, G.; Stern, A. The Feynman problem and the inverse problem for Poisson dynamics. Phys. Rep.
**1995**, 263, 153–212. [Google Scholar] [CrossRef][Green Version] - Leighton, R.; Sands, M.; Feynman, R. Feynman Lectures on Physics; Addison-Wesley: Boston, MA, USA, 1965. [Google Scholar]
- Gerjuoy, E.; Rau, A.R.P.; Spruch, L. A unified formulation of the construction of variational principles. Rev. Mod. Phys.
**1983**, 55, 725–774. [Google Scholar] [CrossRef] - Rivas, M. Generalized Lagrangians and spinning particles. arXiv
**2001**, arXiv:physics/0106023. [Google Scholar] - Dirac, P.A.M. The Theory of Gravitation in Hamiltonian Form. Proc. R. Soc. Lond. Ser. A
**1958**, 246, 333–343. [Google Scholar] - Gràcia, X.; Pons, J.M. Singular Lagrangians: Some geometric structures along the Legendre map. J. Phys. A Math. Gen.
**2001**, 34, 3047–3070. [Google Scholar] [CrossRef] - Deriglazov, A.; Rizzuti, B.F. Reparametrization-invariant formulation of classical mechanics and the Schrödinger equation. Am. J. Phys.
**2011**, 79, 882–885. [Google Scholar] [CrossRef][Green Version] - Deriglazov, A. Classical Mechanics: Hamiltonian and Lagrangian Formalism, 2nd ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Klimenko, S.; Nikitin, I. Non-Critical String Theory: Classical and Quantum Aspects; Nova Science: New York, NY, USA, 2007. [Google Scholar]
- Lawrie, I.D.; Epp, R.J. Interpretation of time-reparametrization-invariant quantum mechanics: An exactly soluble model. Phys. Rev. D
**1996**, 53, 7336–7344. [Google Scholar] [CrossRef] [PubMed][Green Version] - Gryb, S.; Thébault, K. Schrödinger Evolution for the Universe: Reparametrization. Class. Quantum Gravity
**2016**, 33, 065004. [Google Scholar] [CrossRef][Green Version] - Kleinert, H. Path collapse in Feynman formula. Stable path integral formula from local time reparametrization invariant amplitude. Phys. Lett. B
**1989**, 224, 313–318. [Google Scholar] [CrossRef] - Rund, H. The Hamilton-Jacobi Theory in the Calculus of Variations: Its Role in Mathematics and Physics; New University Mathematics Series; Van Nostrand: Huntington, NY, USA, 1966. [Google Scholar]
- Lanczos, C. The Variational Principles of Mechanics; Dover Books On Physics; Dover Publications: New York, NY, USA, 1970. [Google Scholar]
- Beyond Peaceful Coexistence: The Emergence of Space, Time and Quantum; Licata, I. (Ed.) IMPERIAL COLLEGE PRESS, World Scientific Publishing Co. Pte. Ltd.: Singapore, 2016. [Google Scholar]
- Green, M.B.; Schwarz, J.H.; Witten, E. Superstring Theory. Volume 1—Introduction; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Rizzuti, B.F.; Vasconcelos Júnior, G.F.; Resende, M.A. To square root the Lagrangian or not: An underlying geometrical analysis on classical and relativistic mechanical models. arXiv
**2019**, arXiv:1905.01177. [Google Scholar] - Hojman, S.; Harleston, H. Equivalent Lagrangians: Multidimensional case. J. Math. Phys.
**1981**, 22, 1414–1419. [Google Scholar] [CrossRef] - Baker, L.M.; Fairlie, D.B. Hamilton-Jacobi equations and brane associated Lagrangians. Nucl. Phys. B
**2001**, 596, 348–364. [Google Scholar] [CrossRef][Green Version] - Bouvier, P.; Maeder, A. Consistency of Weyl’s Geometry as a Framework for Gravitation. Ap&SS
**1978**, 54, 497–508. [Google Scholar] - Maeder, A.; Bouvier, P. Scale invariance, metrical connection and the motions of astronomical bodies. A&A
**1979**, 73, 82–89. [Google Scholar] - Maeder, A.; Gueorguiev, V.G. The growth of the density fluctuations in the scale-invariant theory: One more challenge for dark matter. arXiv
**2018**, arXiv:1811.03495. [Google Scholar] - Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields, 4th ed.; Elsevier Science: Oxford, UK, 1975. [Google Scholar]
- Rucker, R. Geometry, Relativity and the Fourth Dimension; Dover Books on Mathematics; Dover Publications: New York, NY, USA, 2012; pp. 1–160. [Google Scholar]
- Magueijo, J.; Smolin, L. Lorentz Invariance with an Invariant Energy Scale. Phys. Rev. Lett.
**2002**, 88, 190403. [Google Scholar] [CrossRef] [PubMed][Green Version] - Ragazzoni, R.; Turatto, M.; Gaessler, W. The Lack of Observational Evidence for the Quantum Structure of Spacetime at Planck Scales. ApJ
**2003**, 587, L1–L4. [Google Scholar] [CrossRef] - Fradkin, E.S.; Gitman, D.M. Path-integral representation for the relativistic particle propagators and BFV quantization. Phys. Rev. D
**1991**, 44, 3230–3236. [Google Scholar] [CrossRef] [PubMed] - Dirac, P.A.M. Generalized Hamiltonian Dynamics. Proc. R. Soc. Lond. Ser. A
**1958**, 246, 326–332. [Google Scholar] [CrossRef] - Teitelboim, C. Quantum mechanics on the gravitational field. Phys. Rev. D
**1982**, 25, 3159–3179. [Google Scholar] [CrossRef] - Henneaux, M.; Teitelboim, C. Quantization of Gauge Systems; Princeton Paperbacks; Princeton University Press: Princeton, NJ, USA, 1994; pp. 1–520. [Google Scholar]
- Sundermeyer, K. (Ed.) Constrained Dynamics; Lecture Notes in Physics; Springer: Berlin, Germany, 1982; Volume 169. [Google Scholar] [CrossRef]
- De León, M.; Marrero, J.C.; de Diego, D.M.; Vaquero, M. On the Hamilton-Jacobi theory for singular lagrangian systems. J. Math. Phys.
**2013**, 54, 032902. [Google Scholar] [CrossRef] - Deriglazov, A.A. On singular Lagrangian underlying the Schrödinger equation. Phys. Lett. A
**2009**, 373, 3920–3923. [Google Scholar] [CrossRef][Green Version] - Page, D.N.; Wootters, W.K. Evolution without evolution: Dynamics described by stationary observables. Phys. Rev. D
**1983**, 27, 2885–2892. [Google Scholar] [CrossRef] - Géhéniau, J.; Prigogine, I. The birth of time. Found. Phys.
**1986**, 16, 437–443. [Google Scholar] [CrossRef] - Gaioli, F.H.; Garcia-Alvarez, E.T. The problem of time in parametrized theories. Gen. Relativ. Gravit.
**1994**, 26, 1267–1275. [Google Scholar] [CrossRef][Green Version] - Elze, H.T.; Schipper, O. Time without time: A stochastic clock model. Phys. Rev. D
**2002**, 66, 044020. [Google Scholar] [CrossRef][Green Version] - Elze, H.T. Quantum Mechanics Emerging from “Timeless” Classical Dynamics. In Trends in General Relativity and Quantum Cosmology; Benton, C.V., Ed.; Nova Science Publ.: Hauppauge, NY, USA, 2006; pp. 79–101. [Google Scholar]
- Albrecht, A.; Iglesias, A. Clock ambiguity and the emergence of physical laws. Phys. Rev. D
**2008**, 77, 063506. [Google Scholar] [CrossRef][Green Version] - Bicego, A. On a probabilistic definition of time. arXiv
**2010**, arXiv:1010.2968. [Google Scholar] - Viznyuk, S. Time as a parameter of statistical ensemble. arXiv
**2011**, arXiv:1110.3296. [Google Scholar] - Bojowald, M.; Höhn, P.A.; Tsobanjan, A. An effective approach to the problem of time. Class. Quantum Gravity
**2011**, 28, 035006. [Google Scholar] [CrossRef][Green Version] - Prati, E. Generalized clocks in timeless canonical formalism. J. Phys. Conf. Ser.
**2011**, 306, 012013. [Google Scholar] [CrossRef] - Wetterich, C. Probabilistic Time. Found. Phys.
**2012**, 42, 1384–1443. [Google Scholar] [CrossRef][Green Version] - Barbour, J.; Lostaglio, M.; Mercati, F. Scale anomaly as the origin of time. Gen. Relativ. Gravit.
**2013**, 45, 911–938. [Google Scholar] [CrossRef][Green Version] - Vaccaro, J.A. T Violation and the Unidirectionality of Time: Further Details of the Interference. Found. Phys.
**2015**, 45, 691–706. [Google Scholar] [CrossRef][Green Version] - Marletto, C.; Vedral, V. Evolution without evolution and without ambiguities. Phys. Rev. D
**2017**, 95, 043510. [Google Scholar] [CrossRef][Green Version] - Elçi, A. Time in classical and in quantum mechanics. J. Phys. Math. Gen.
**2010**, 43, 285302. [Google Scholar] [CrossRef] - Renner, R.; Stupar, S. Time in Physics Tutorials, Schools; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
- Velev, M.V. Relativistic mechanics in multiple time dimensions. Phys. Essays
**2012**, 25, 403–438. [Google Scholar] [CrossRef][Green Version] - Craig, W.; Weinstein, S. On determinism and well-posedness in multiple time dimensions. Proc. R. Soc. Lond. Ser. A
**2009**, 465, 3023–3046. [Google Scholar] [CrossRef] - Carroll, S.M.; Chen, J. Spontaneous Inflation and the Origin of the Arrow of Time. arXiv
**2004**, arXiv:hep-th/0410270. [Google Scholar] - Carroll, S.M.; Chen, J. Does inflation provide natural initial conditions for the universe. Gen. Relativ. Gravit.
**2005**, 37, 1671–1674. [Google Scholar] [CrossRef][Green Version] - Gurzadyan, V.G.; Sargsyan, S.; Yegorian, G. On the time arrows, and randomness in cosmological signals. Eur. Phys. J. Web Conf.
**2013**, 58, 02005. [Google Scholar] [CrossRef] - Page, D.N. Inflation does not explain time asymmetry. Nature
**1983**, 304, 39–41. [Google Scholar] [CrossRef] - Davies, P.C.W. Inflation in the universe and time asymmetry. Nature
**1984**, 312, 524–527. [Google Scholar] [CrossRef] - Lawrie, I.D. Time evolution in quantum cosmology. Phys. Rev. D
**2011**, 83, 043503. [Google Scholar] [CrossRef][Green Version] - Gonzalez-Ayala, J.; Cordero, R.; Angulo-Brown, F. Is the (3 + 1)-d nature of the universe a thermodynamic necessity? EPL (Europhys. Lett.)
**2016**, 113, 40006. [Google Scholar] [CrossRef][Green Version] - Mukohyama, S.; Uzan, J.P. From configuration to dynamics: Emergence of Lorentz signature in classical field theory. Phys. Rev. D
**2013**, 87, 065020. [Google Scholar] [CrossRef][Green Version] - Pradhan, R.K. Observed Spacetime Dimensionality from Fundamental Principles. arXiv
**2013**, arXiv:1303.5634. [Google Scholar] - Arkani-Hamed, N.; Cohen, A.G.; Georgi, H. (De)Constructing Dimensions. Phys. Rev. Lett.
**2001**, 86, 4757–4761. [Google Scholar] [CrossRef][Green Version] - Tegmark, M. LETTER TO THE EDITOR: On the dimensionality of spacetime. Class. Quantum Gravity
**1997**, 14, L69–L75. [Google Scholar] [CrossRef] - Callender, C. Answers in search of a question: `proofs’ of the tri-dimensionality of space. Stud. Hist. Philos. Mod. Phys.
**2005**, 36, 113–136. [Google Scholar] [CrossRef] - Bekenstein, J.D. Relation between physical and gravitational geometry. Phys. Rev. D
**1993**, 48, 3641–3647. [Google Scholar] [CrossRef] [PubMed][Green Version] - Stückelberg de Breidenbach, E.C.G.; Scheurer, P.B. Thermocinétique Phénoménologique Galiléenne Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften; Mathematische Reihe, Birkhäuser: Basel, Switzerland; Stuttgart, Germany, 1974; p. 253. [Google Scholar]
- Pavšič, M. Klein-Gordon-Wheeler-DeWitt-Schrödinger equation. Phys. Lett. B
**2011**, 703, 614–619. [Google Scholar] [CrossRef][Green Version] - Bojowald, M.; Höhn, P.A.; Tsobanjan, A. Effective approach to the problem of time: General features and examples. Phys. Rev. D
**2011**, 83, 125023. [Google Scholar] [CrossRef][Green Version] - Gryb, S.; Thébault, K. The Role of Time in Relational Quantum Theories. Found. Phys.
**2012**, 42, 1210–1238. [Google Scholar] [CrossRef][Green Version] - Schwinger, J. Quantized Gravitational Field. Phys. Rev.
**1963**, 130, 1253–1258. [Google Scholar] [CrossRef] - Pavsic, M. The Landscape of Theoretical Physics: A Global View: From Point Particles to the Brane World and Beyond. In Search of a Unifying Principle; Kluwer Academic: Dordrecht, The Netherlands; Boston, MA, USA, 2001. [Google Scholar]
- Kuwabara, R. Time-dependent mechanical symmetries and extended Hamiltonian systems. Rep. Math. Phys.
**1984**, 19, 27–38. [Google Scholar] [CrossRef] - Landau, L.; Lifshitz, E. Quantum Mechanics: Non-Relativistic Theory. Course of Theoretical Physics; Elsevier Science: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Antoine, J.P. Beyond Hilbert space: RHS, PIP and all that. J. Phys. Conf. Ser.
**2019**, 1194, 012007. [Google Scholar] [CrossRef] - Deriglazov, A.A.; Pupasov-Maksimov, A.M. Frenkel electron on an arbitrary electromagnetic background and magnetic Zitterbewegung. Nucl. Phys. B
**2014**, 885, 1–24. [Google Scholar] [CrossRef][Green Version] - Deriglazov, A.A.; Pupasov-Maksimov, A.M. Geometric Constructions Underlying Relativistic Description of Spin on the Base of Non-Grassmann Vector-Like Variable. SIGMA
**2014**, 10, 012. [Google Scholar] [CrossRef][Green Version] - Deriglazov, A.A.; Pupasov-Maksimov, A.M. Lagrangian for Frenkel electron and position’s non-commutativity due to spin. arXiv
**2013**, arXiv:1312.6247. [Google Scholar] [CrossRef][Green Version] - Deriglazov, A.A.; Gitman, D.M. Classical Description of Spinning Degrees of Freedom of Relativistic Particles by Means of Commuting Spinors. Mod. Phys. Lett. A
**1999**, 14, 709–720. [Google Scholar] [CrossRef][Green Version]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gueorguiev, V.G.; Maeder, A.
Reparametrization Invariance and Some of the Key Properties of Physical Systems. *Symmetry* **2021**, *13*, 522.
https://doi.org/10.3390/sym13030522

**AMA Style**

Gueorguiev VG, Maeder A.
Reparametrization Invariance and Some of the Key Properties of Physical Systems. *Symmetry*. 2021; 13(3):522.
https://doi.org/10.3390/sym13030522

**Chicago/Turabian Style**

Gueorguiev, Vesselin G., and Andre Maeder.
2021. "Reparametrization Invariance and Some of the Key Properties of Physical Systems" *Symmetry* 13, no. 3: 522.
https://doi.org/10.3390/sym13030522