# Novel Approach to Collect and Process Power Quality Data in Medium-Voltage Distribution Grids

^{*}

## Abstract

**:**

## 1. Introduction

- Cascade short-time Fourier transform used to estimate phase voltage and current spectra from the sensors data;
- Estimation of positive and negative voltages and currents components according to the instantaneous symmetrical components theory;
- Estimation of average and fluctuating power components;
- Transmitting the estimated power data via protocols for time-critical applications on the example of precision time protocol;
- Limiting the number of considered harmonics or switching to the transmission of average and oscillating power components depending on the transmission channel bandwidth and type of receiving device.

## 2. Materials and Methods

- Gathering of information from all MUs;
- Monitoring situation at every grid node, which has MU installed as well as monitoring loads status;
- Distribution of reference signals for compensation devices to effectively stabilize grid voltages across the whole grid and mitigate harmonic currents;
- Prediction of escalating the emergency situations, such as short-circuits and according to the reaction by the generating control signals for loads, compensators and RPUs;
- Logging necessary part of gathering information as well as sending the whole information to cloud storage.

## 3. Results

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

AC | Alternate current |

ADC | Analog to a digital converter |

AFE | Active front–end |

AI | Artificial intelligence |

AR | Active rectifier |

DC | Direct current |

DR | Diode rectifier |

FFT | Fast Fourier transform |

IGBT | Insulated–gate bipolar transistor |

IoT | Internet of Things |

IP | Internet protocol |

MC | Master controller |

MU | Measurements unit |

NDP | Neighbor discovery protocol |

PCC | Point of common coupling |

PLC | Power line communications |

PTP | Precision time protocol |

RPU | Relay protection unit |

SCADA | Supervisory control and data acquisition |

STATCOM | Static synchronous compensator |

STFT | Short-time Fourier transform |

VFD | Variable-frequency drive |

## References

- Cherepovitsyn, A.; Fedoseev, S.; Tcvetkov, P.; Sidorova, K.; Kraslawski, A. Potential of Russian regions to implement CO2-enhanced oil recovery. Energies
**2018**, 11, 1528. [Google Scholar] [CrossRef] [Green Version] - Tom, R.J.; Sankaranarayanan, S. IoT based SCADA integrated with fog for power distribution automation. In Proceedings of the 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), Lisbon, Portugal, 21–24 June 2017; pp. 1–4. [Google Scholar]
- Zhukovskiy, Y.; Batueva, D.; Buldysko, A.; Shabalov, M. Motivation towards energy saving by means of IoT personal energy manager platform. J. Phys. Conf. Ser.
**2019**, 1333, 062033. [Google Scholar] [CrossRef] - TADVISER. Available online: http://tadviser.com/index.php/Article:IIoT_2018:_The_market_of_industrial_Internet_of_Things_in_Russia. (accessed on 2 February 2021).
- Litvinenko, V.S. Digital economy as a factor in the technological development of the mineral sector. Nat. Resour. Res.
**2020**, 29, 1521–1541. [Google Scholar] [CrossRef] - Makhovikov, A.B.; Katuntsov, E.V.; Kosarev, O.V.; Tsvetkov, P.S. Digital transformation in oil and gas extraction. In Proceedings of the 11th conference of the Russian–German Raw Materials, Potsdam, Germany, 7–8 November 2018; pp. 531–538. [Google Scholar]
- Akbar, A.; Khan, A.; Carrez, F.; Moessner, K. Predictive analytics for complex IoT data streams. IEEE Internet Things J.
**2017**, 4, 1571–1582. [Google Scholar] [CrossRef] [Green Version] - Zhukovskiy, Y.; Malov, D. Concept of smart cyberspace for smart grid implementation. J. Phys. Conf. Ser.
**2018**, 1015, 042067. [Google Scholar] [CrossRef] - Abramovich, B.; Sychev, Y. Problems of ensuring energy security for enterprises from the mineral resources sector. J. Min. Inst.
**2016**, 217, 132–139. [Google Scholar] - Zhukovskiy, Y.L.; Starshaia, V.V.; Batueva, D.E.; Buldysko, A.D. Analysis of technological changes in integrated intelligent power supply systems. In Proceedings of the 11th conference of the Russian–German Raw Materials, Potsdam, Germany, 7–8 November 2018; pp. 249–258. [Google Scholar]
- Bosch, S.; Staiger, J.; Steinhart, H. Predictive current control for an active power filter with LCL-filter. IEEE Trans. Ind. Electron.
**2017**, 65, 4943–4952. [Google Scholar] [CrossRef] - Mazakov, E.B. Representation and processing of knowledge in information automated systems of intelligent field. J. Min. Inst.
**2014**, 208, 256. [Google Scholar] - Svetlana, V.; Razmanova, O.; Andrukhova, V. Oilfield service companies as part of economy digitalization: Assessment of the prospects for innovative development. J. Min. Inst.
**2020**, 244, 482–492. [Google Scholar] [CrossRef] - Nordhaus, W.D. Two centuries of productivity growth in computing. J. Econ. Hist.
**2007**, 67, 128–159. [Google Scholar] [CrossRef] [Green Version] - Ugolnikov, A.V.; Makarov, N.V. Application of automation systems for monitoring and energy efficiency accounting indicators of mining enterprises compressor facility operation. J. Min. Inst.
**2019**, 236, 245. [Google Scholar] [CrossRef] - Safiullin, R.N.; Afanasyev, A.S.; Reznichenko, V.V. The concept of development of monitoring systems and management of intelligent technical complexes. J. Min. Inst.
**2019**, 237, 322. [Google Scholar] [CrossRef] - Maksarov, V.V.; Leonidov, P.V. Modeling and control of dynamical properties of the technological systems. J. Min. Inst.
**2014**, 209, 71. [Google Scholar] - Fei, J.; Chu, Y. Double hidden layer output feedback neural adaptive global sliding mode control of active power filter. IEEE Trans. Power Electron.
**2019**, 35, 3069–3084. [Google Scholar] [CrossRef] - Güler, N.F.; Übeyli, E.D.; Güler, I. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl.
**2005**, 29, 506–514. [Google Scholar] [CrossRef] - Gough, P.T. A fast spectral estimation algorithm based on the FFT. IEEE Trans. Signal. Process.
**1994**, 42, 1317–1322. [Google Scholar] [CrossRef] - Wang, X.; Ying, T.; Tian, W. Spectrum Representation Based on STFT. In Proceedings of the 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Chengdu, China, 17–19 October 2020; pp. 435–438. [Google Scholar]
- Evensen, G. The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean. Dyn.
**2003**, 53, 343–367. [Google Scholar] [CrossRef] - Wu, W.; Liu, Y.; He, Y.; Chung, H.S.H.; Liserre, M.; Blaabjerg, F. Damping methods for resonances caused by LCL-filter-based current-controlled grid-tied power inverters: An overview. IEEE Trans. Ind. Electron.
**2017**, 64, 7402–7413. [Google Scholar] [CrossRef] [Green Version] - Carrizosa, M.J.; Stankovic, N.; Vannier, J.C.; Shklyarskiy, Y.E.; Bardanov, A.I. Multi-terminal dc grid overall control with modular multilevel converters. J. Min. Inst.
**2020**, 243, 357. [Google Scholar] [CrossRef] - El Kadi, Y.A.; Baghli, F.Z.; Lakhal, Y. Energy quality optimization in smart grids Faults monitoring by the space vector signature analysis method. In Proceedings of the 2020 IEEE 6th International Conference on Optimization and Applications (ICOA), Beni Mellal, Morocco, 20–21 April 2020; pp. 1–8. [Google Scholar]
- Zakaryukin, V.; Kryukov, A.; Cherepanov, A. Intelligent Traction Power Supply System. In Energy Management of Municipal Transportation Facilities and Transport; Springer: Cham, Switzerland, 2017; pp. 91–99. Available online: https://link.springer.com/chapter/10.1007/978-3-319-70987-1_10 (accessed on 11 March 2021).
- GOST 32144-2013 Electrical Energy. Electromagnetic Compatibility of Technical Equipment. Standards of Electric Power Quality in General-Purpose Power Supply Systems. Available online: http://docs.cntd.ru/document/1200104301 (accessed on 2 February 2021).
- Pankov, I.A.; Frolov, V.Y. Increase of electric power quality in autonomous electric power systems. J. Min. Inst.
**2017**, 227, 563. [Google Scholar] [CrossRef] - Liu, X.; Lv, J.; Gao, C.; Chen, Z.; Chen, S. A novel STATCOM based on diode-clamped modular multilevel converters. IEEE Trans. Power Electron.
**2016**, 32, 5964–5977. [Google Scholar] [CrossRef] - Mosaad, M.I. Model reference adaptive control of STATCOM for grid integration of wind energy systems. IET Electr. Power Appl.
**2018**, 12, 605–613. [Google Scholar] [CrossRef] - Khramshin, T.R.; Krubtsov, D.S.; Kornilov, G.P. Mathematical model of the active rectifier under unbalanced voltage operating conditions. Russ. Internet J. Electr. Eng.
**2016**, 1, 3–9. [Google Scholar] - Svensson, J. Synchronisation methods for grid-connected voltage source converters. IEEE Proc. Gener. Transm. Distrib.
**2001**, 148, 229–235. [Google Scholar] [CrossRef] [Green Version] - Alam, M.R.; Bai, F.; Yan, R.; Saha, T.K. Classification and visualization of power quality disturbance-events using space vector ellipse in complex plane. IEEE Trans. Power Deliv.
**2020**, 1, 1. [Google Scholar] [CrossRef] - Bollen, M.H. Understanding Power Quality Problems: Voltage Sags and Interruptions. 2000. Available online: https://ieeexplore.ieee.org/book/5270869 (accessed on 11 March 2021).
- Liang, X. Emerging power quality challenges due to integration of renewable energy sources. IEEE Trans. Ind. Appl.
**2016**, 53, 855–866. [Google Scholar] [CrossRef] - Akagi, H.; Watanabe, E.H.; Aredes, M. Instantaneous Power Theory and Applications to Power Conditioning; John Wiley & Sons, 2017; Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/0470118938 (accessed on 3 March 2021).
- Arrillaga, J.; Watson, N.R. Power System Harmonics; John Wiley & Sons, 2003; p. 412. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/0470871229 (accessed on 11 March 2021).
- Shklyarskiy, Y.; Hanzelka, Z.; Skamyin, A. Experimental Study of Harmonic Influence on Electrical Energy Metering. Energies
**2020**, 13, 5536. [Google Scholar] [CrossRef] - Vorontsov, A.G.; Glushakov, V.V.; Pronin, M.V.; Sychev, Y.A. Cascade frequency converters control features. J. Min. Inst.
**2020**, 241, 37. [Google Scholar] [CrossRef] - Vasiliev, B.Y.; Kozyaruk, A.E.; Mardashov, D.V. Increasing the Utilization Factor of an Autonomous Inverter under Space Vector Control. Russ. Electr. Eng.
**2020**, 91, 247–254. [Google Scholar] [CrossRef] - Zhan, L.; Liu, Y.; Liu, Y. A clarke transformation-based DFT phasor and frequency algorithm for wide frequency range. IEEE Trans. Smart Grid
**2016**, 9, 67–77. [Google Scholar] [CrossRef] - Chikkerur, S.; Cartwright, A.N.; Govindaraju, V. Fingerprint enhancement using stft analysis. Pattern Recognit.
**2007**, 40, 198–211. [Google Scholar] [CrossRef] - Ilyushin, Y.; Golovina, E. Stability of temperature field of the distributed control system. ARPN J. Eng. Appl. Sci.
**2020**, 15, 664–668. [Google Scholar] - Wollschlaeger, M.; Sauter, T.; Jasperneite, J. The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0. IEEE Ind. Electron. Mag.
**2017**, 11, 17–27. [Google Scholar] [CrossRef] - De Francisci Morales, G.; Bifet, A.; Khan, L.; Gama, J.; Fan, W. Iot big data stream mining. Available online: https://dl.acm.org/doi/10.1145/2939672.2945385 (accessed on 11 March 2021).
- Luo, L.; Gu, W.; Zhang, X.P.; Cao, G.; Wang, W.; Zhu, G.; You, D.; Wu, Z. Optimal siting and sizing of distributed generation in distribution systems with PV solar farm utilized as STATCOM (PV-STATCOM). Appl. Energy
**2018**, 210, 1092–1100. [Google Scholar] [CrossRef] - Gallo, D.; Landi, C.; Rignano, N. Real-time digital multifunction instrument for power quality integrated indexes measurement. IEEE Trans. Instrum. Meas.
**2008**, 57, 2769–2776. [Google Scholar] [CrossRef] - Shklyarskiy, Y.; Skamyin, A.; Vladimirov, I.; Gazizov, F. Distortion load identification based on the application of compensating devices. Energies
**2020**, 13, 1430. [Google Scholar] [CrossRef] [Green Version] - Shklyarskiy, Y.E.; Pirog, S. Impact of the load curve on losses in the power supply network of the company. J. Min. Inst.
**2016**, 222, 859–863. [Google Scholar] - Hoon, Y.; Mohd Radzi, M.A.; Hassan, M.K.; Mailah, N.F. Control algorithms of shunt active power filter for harmonics mitigation: A review. Energies
**2017**, 10, 2038. [Google Scholar] [CrossRef] [Green Version] - Terriche, Y.; Guerrero, J.M.; Vasquez, J.C. Performance improvement of shunt active power filter based on non-linear least-square approach. Electr. Power Syst. Res.
**2018**, 160, 44–55. [Google Scholar] [CrossRef] - Rodriguez, J.; Bernet, S.; Steimer, P.K.; Lizama, I.E. A survey on neutral-point-clamped inverters. IEEE Trans. Ind. Electron.
**2009**, 57, 2219–2230. [Google Scholar] [CrossRef] - Hossain, E.; Tür, M.R.; Padmanaban, S.; Ay, S.; Khan, I. Analysis and mitigation of power quality issues in distributed generation systems using custom power devices. IEEE Access
**2018**, 6, 16816–16833. [Google Scholar] [CrossRef] - Padiyar, K.R. FACTS Controllers in Power Transmission and Distribution; New Age International. 2007, p. 549. Available online: https://pdfslide.net/documents/facts-controllers-in-power-transmission-and-distribution-55845a9210575.html (accessed on 11 March 2021).
- Mousavi, S.Y.M.; Jalilian, A.; Savaghebi, M.; Guerrero, J.M. Coordinated control of multifunctional inverters for voltage support and harmonic compensation in a grid-connected microgrid. Electr. Power Syst. Res.
**2018**, 155, 254–264. [Google Scholar] [CrossRef] [Green Version] - Sirjani, R.; Jordehi, A.R. Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review. Renew. Sustain. Energy Rev.
**2017**, 77, 688–694. [Google Scholar] [CrossRef] - Pedersen, K.O.H.; Nielsen, A.H.; Poulsen, N.K. Short-circuit impedance measurement. IEEE Proc. Gener. Transm. Distrib.
**2003**, 150, 169–174. [Google Scholar] [CrossRef] - Pirog, S.; Shklyarskiy, Y.E.; Skamyin, A.N. Non-linear electrical load location identification. J. Min. Inst.
**2019**, 237, 317. [Google Scholar] [CrossRef] - Woo, D.J.; Lee, T.K. Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS. IEEE Trans. Microw. Theory Tech.
**2005**, 53, 2139–2144. [Google Scholar] - Peng, F.Z. Flexible AC transmission systems (FACTS) and resilient AC distribution systems (RACDS) in smart grid. Proc. IEEE
**2017**, 105, 2099–2115. [Google Scholar] [CrossRef] - Wu, X.H.; Panda, S.K.; Xu, J.X. Design of a plug-in repetitive control scheme for eliminating supply-side current harmonics of three-phase PWM boost rectifiers under generalized supply voltage conditions. IEEE Trans. Power Electron.
**2010**, 25, 1800–1810. [Google Scholar] [CrossRef] - Khokhar, S.; Zin, A.A.M.; Memon, A.P.; Mokhtar, A.S. A new optimal feature selection algorithm for classification of power quality disturbances using discrete wavelet transform and probabilistic neural network. Measurement
**2017**, 95, 246–259. [Google Scholar] [CrossRef] - Yacamini, R. Power system harmonics. IV. Interharmonics. Power Eng. J.
**1996**, 10, 185–193. [Google Scholar] [CrossRef] - Tummuru, N.R.; Mishra, M.K.; Srinivas, S. Multifunctional VSC controlled microgrid using instantaneous symmetrical components theory. IEEE Trans. Sustain. Energy
**2013**, 5, 313–322. [Google Scholar] [CrossRef] - Skamyin, A.N.; Vasilkov, O.S. Power Components Calculation and Their Application in Presence of High Harmonics. In Proceedings of the 2019 Electric Power Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical Engineering and Mechatronics (SEEM), Kardla, Estonia, 12–15 June 2019; pp. 1–4. [Google Scholar]
- Alcalá, J.; Bárcenas, E.; Cárdenas, V. Practical methods for tuning PI controllers in the DC-link voltage loop in Back-to-Back power converters. In Proceedings of the 12th IEEE International Power Electronics Congress, San Luis Potosi, Mexico, 22–25 August 2010; pp. 46–52. Available online: https://ieeexplore.ieee.org/document/5598898 (accessed on 11 March 2021).
- Wei, L.; Zhou, B.; Ma, X.; Chen, D.; Zhang, J.; Peng, J.; Luo, Q.; Sun, L.; Li, D.; Chen, L. Lightning: A high-efficient neighbor discovery protocol for low duty cycle WSNs. IEEE Commun. Lett.
**2016**, 20, 966–969. [Google Scholar] [CrossRef]

**Figure 2.**Structure of the two-level ES-15.90 VFD with diode rectifier. ${Z}_{l}$—equivalent impedance of the load (variable depending on the operation cycle); ${i}_{l}$ —load current; $C$ —capacitor of the DC-link; ${i}_{x}$ —input current in phase $x$; ${v}_{gx}$ —phase $x$ to the neutral voltage at the PCC; ${v}_{dc}$—DC-link voltage.

**Figure 3.**Structure of the three-level ES-15.90 VFD with active rectifier. ${Z}_{l}$—equivalent impedance of the load (variable depending on the operation cycle); ${i}_{l}$—load current; ${C}_{1},\text{}{C}_{2}$—capacitors of the DC-link; ${S}_{xn}$—IGBT module in phase $x$ with number $n$; ${i}_{fx}$—filter current in phase $x$; ${v}_{gx}$—phase $x$ to the neutral voltage at the PCC; ${L}_{f}$—filter inductance, ${v}_{dc}$—DC-link voltage.

**Figure 5.**The flowchart of the algorithm for estimating power components at the grid node and transmits them across the network.

**Figure 8.**Structure of the grid model to test signal collecting in the open suite mining network. 1—a model of main step-down substation 35/6 kV—ideal voltage source with finite short-circuit resistance; 2—cable lines models; 3—linear load model, implemented to vary relation between non-sinusoidal and sinusoidal currents; 4—transformer 6/0.4 kV (star—star); 5—diode rectifier of the dragline #3; 6—LCL filters of dragline #1 and #2; 7—signals from the control system of AFE for dragline #1 and #2; 8—three-level IGBT AFE; 9—DC-link of VFD of draglines #1 and #2; 10—equivalent load of draglines #1 and #2.

**Figure 9.**Draglines operating in non-synchronized mode. Waveforms of phase currents at the input of: dragline 1—(

**a**), dragline 2—(

**b**), grid node—(

**c**); spectrum of the grid node input currents—(

**d**).

**Figure 10.**Draglines operating in synchronized mode. Waveforms of phase currents at the input of: dragline 1—(

**a**), dragline 2—(

**b**), grid node—(

**c**); spectrum of the grid node input currents—(

**d**).

Harmonic | Currents | Voltages | Active Power | Reactive Power |
---|---|---|---|---|

Instantaneous | $I$, ${\theta}_{i}$ | $V$, ${\theta}_{v}$ | $p$ | $q$ |

1 | ${I}^{+\left(1\right)}$, ${\theta}_{i}^{+\left(1\right)}$,${I}^{-\left(1\right)}$, ${\theta}_{i}^{-\left(1\right)}$ | ${V}^{+\left(1\right)}$, ${\theta}_{v}^{+\left(1\right)}$,${V}^{-\left(1\right)}$, ${\theta}_{v}^{-\left(1\right)}$ | $\overline{p}$ | $\overline{q}$ |

5 | ${I}^{+\left(5\right)}$, ${\theta}_{i}^{+\left(5\right)}$,${I}^{-\left(5\right)}$, ${\theta}_{i}^{-\left(5\right)}$ | ${V}^{+\left(5\right)}$, ${\theta}_{v}^{+\left(5\right)}$,${V}^{-\left(5\right)}$, ${\theta}_{v}^{-\left(5\right)}$ | ${p}^{\left(5\right)}$ | ${q}^{\left(5\right)}$ |

39 | Similar to the 5th harmonic |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kryltcov, S.; Makhovikov, A.; Korobitcyna, M.
Novel Approach to Collect and Process Power Quality Data in Medium-Voltage Distribution Grids. *Symmetry* **2021**, *13*, 460.
https://doi.org/10.3390/sym13030460

**AMA Style**

Kryltcov S, Makhovikov A, Korobitcyna M.
Novel Approach to Collect and Process Power Quality Data in Medium-Voltage Distribution Grids. *Symmetry*. 2021; 13(3):460.
https://doi.org/10.3390/sym13030460

**Chicago/Turabian Style**

Kryltcov, Sergei, Aleksei Makhovikov, and Mariia Korobitcyna.
2021. "Novel Approach to Collect and Process Power Quality Data in Medium-Voltage Distribution Grids" *Symmetry* 13, no. 3: 460.
https://doi.org/10.3390/sym13030460