# Human Reaction Times: Linking Individual and Collective Behaviour Through Physics Modeling

^{1}

^{2}

^{3}

^{4}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Description of the Sample and the Experiments

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Thorpe, S.; Fize, D.; Marlot, C. Speed of processing in the human visual system. Nature
**1996**, 381, 520. [Google Scholar] [CrossRef] [PubMed] - Krajbich, I.; Bartling, B.; Hare, T.; Fehr, E. Rethinking fast and slow based on a critique of reaction-time reverse inference. Nat. Commun.
**2015**, 6, 7455. [Google Scholar] [CrossRef] [Green Version] - Barinaga, M. Neurons put the uncertainty into reaction times. Science
**1996**, 274, 344. [Google Scholar] [CrossRef] - Tuch, D.S.; Salat, D.H.; Wisco, J.J.; Zaleta, A.K.; Hevelone, N.D.; Rosas, H.D. Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proc. Natl. Acad. Sci. USA
**2005**, 102, 12212. [Google Scholar] [CrossRef] [Green Version] - Colonius, H.; Diederich, A. Measuring multisensory integration: From reaction times to spike counts. Sci. Rep.
**2017**, 7, 3023. [Google Scholar] [CrossRef] [Green Version] - Ritchie, J.B.; Beeck, H.D. Using neural distance to predict reaction time for categorizing the animacy, shape, and abstract properties of objects. Sci. Rep.
**2019**, 9, 13201. [Google Scholar] [CrossRef] - Abbasi-Kesbi, R.; Memarzadeh-Tehran, H.; Deenm, H.J. Technique to estimate human reaction time based on visual perception. Healthc. Technol. Lett.
**2017**, 4, 73. [Google Scholar] [CrossRef] [PubMed] - Badau, D.; Baydil, B.; Badau, A. Differences among three measures of reaction time based on hand laterality in individual. Sports
**2018**, 6, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ruhai, G.; Weiwei, Z.; Zhong, W. Research on the driver reaction time of safety distance model on highway based on fuzzy mathematics. In Proceedings of the IEEE International Conference on Optoelectronics and Image Processing (ICOIP), Haikou, China, 10–11 November 2010; Volume 2, p. 293. [Google Scholar]
- Yamagishi, T.; Matsumoto, Y.; Kiyonari, T.; Takagishi, H.; Li, Y.; Sakagami, R.K.M. Response time in economic games reflects different types of decision conflict for prosocial and proself individuals. Proc. Natl. Acad. Sci. USA
**2017**, 114, 6394. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Luce, R.D. Response Times: Their Role in Inferring Elementary Mental Organization; Oxford University Press: New York, NY, USA, 1986. [Google Scholar]
- Moret-Tatay, C.; Gamermann, D.; Navarro-Pardo, E.; de Córdoba, P.F. ExGUtils: A python package for statistical analysis with the ex-Gaussian probability density. Front. Psychol.
**2018**, 9, 1. [Google Scholar] - Ratcliff, R.; Murdock, B.B. Retrieval processes in recognition memory. Psychol. Rev.
**1976**, 83, 190. [Google Scholar] [CrossRef] - Gmehlin, D.; Fuermaier, A.B.M.; Walther, S.; Debelak, R.; Rentrop, M.; Westermann, C.; Sharma, A.; Tucha, L.; Koerts, J.; Tucha, O.; et al. Intraindividual variability in inhibitory function in adults with ADHD. An ex-Gaussian approach. PLoS ONE
**2014**, 9, e112298. [Google Scholar] [CrossRef] [PubMed] - Adamo, N.; Hodsoll, J.; Asherson, P.; Buitelaar, J.K.; Kuntsi, J. Ex-Gaussian, frequency and reward analyses reveal specificity of reaction time fluctuations to ADHD and not autism traits. J. Abnorm. Child Psychol.
**2019**, 47, 557. [Google Scholar] [CrossRef] [Green Version] - Moret-Tatay, C.; Leth-Steensen, C.; Irigaray, T.Q.; Argimon, I.I.L.; Gamermann, D.; Abad-Tortosa, D.; Oliveira, C.; de Córdoba, P.F. The effect of corrective feedback on performance in basic cognitive tasks: An analysis of RT components. Psychol. Belg.
**2016**, 56, 370. [Google Scholar] [CrossRef] - Mira-Iglesias, A.; Navarro-Pardo, E.; Conejero, J.A. Power-law distribution of natural visibility graphs from reaction times series. Symmetry
**2019**, 11, 563. [Google Scholar] [CrossRef] [Green Version] - Moreno-Cid, A.; Moret-Tatay, C.; Irigaray, T.Q.; Argimon, I.I.L.; Murphy, M.; Szczerbinski, M.; Martínez-Rubio, D.; Beneyto-Arrojo, M.J.; Navarro-Pardo, E.; de Córdoba, P.F. The role of age and emotional valence in word recognition: An ex-Gaussian analysis. Stud. Psychol.
**2015**, 57, 83. [Google Scholar] [CrossRef] - Moret-Tatay, C.; Moreno-Cid, A.; Argimon, I.I.L.; Quarti-Irigaray, T.; Szczerbinski, M.; Murphy, M.; Vázquez-Martínez, A.; Vázquez-Molina, J.; Sáiz-Mauleón, B.; Navarro-Pardo, E.; et al. The effects of age and emotional valence on recognition memory: An ex-Gaussian components analysis. Scand. J. Psychol.
**2014**, 55, 420. [Google Scholar] [CrossRef] [Green Version] - Navarro-Pardo, E.; Navarro-Prados, A.B.; Moret-Tatay, D.G. Differences between young and old university students on a lexical decision task: Evidence through an ex- gaussian approach. J. General Psychol.
**2013**, 140, 251. [Google Scholar] [CrossRef] [Green Version] - Leth-Steensen, C.; Elbaz, Z.K.; Douglas, V.I. Douglas Mean response times, variability, and skew in the responding of ADHD children: A response time distributional approach. Acta Psychol.
**2000**, 104, 167. [Google Scholar] [CrossRef] - Shahar, N.; Teodorescu, A.R.; Karmon-Presser, A.; Anholt, G.E.; Meiran, N. Memory for action rules and reaction time variability in attention-deficit/hyperactivity disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimag.
**2016**, 1, 132. [Google Scholar] [CrossRef] - Matzke, D.; Wagenmakers, E.-J. Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychon. Bull. Rev.
**2009**, 16, 798. [Google Scholar] [CrossRef] [PubMed] - Hernaiz-Guijarro, M.; Castro-Palacio, J.C.; Navarro-Pardo, E.; Isidro, J.M.; de Córdoba, P.F. A probabilistic classification procedure based on response time analysis towards a quick pre-diagnosis of student’s attention deficit. Mathematics
**2019**, 7, 473. [Google Scholar] [CrossRef] [Green Version] - Iglesias-Martínez, M.E.; Hernaiz-Guijarro, M.; Castro-Palacio, J.C.; Fernández-de-Córdoba, P.; Isidro, J.M.; Navarro-Pardo, E. Machinery Failure Approach and Spectral Analysis to Study the Reaction Time Dynamics over Consecutive Visual Stimuli: An Entropy-Based Model. Mathematics
**2020**, 8, 1979. [Google Scholar] [CrossRef] - Castellanos, F.X.; Sonuga-Barke, E.J.S.; Scheres, A.; Martino, A.D.; Hyde, C.; Walters, J.R. Varieties of Attention-Deficit/Hyperactivity Disorder-Related Intra-Individual Variability. Biol. Psychiatry
**2005**, 57, 1416. [Google Scholar] [CrossRef] [Green Version] - Tolman, R. The Principles of Statistical Mechanics; Dover Publications Inc.: New York, NY, USA, 2003. [Google Scholar]
- World Medical Association. Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. J. Am. Med. Assoc.
**2013**, 310, 2191. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Forster, K.I.; Forster, J.C. DMDX: A windows display program with millisecond accuracy. Behav. Res. Method. Instrum. Comput.
**2003**, 35, 116. [Google Scholar] [CrossRef] [Green Version] - Garaizar, P.; Vadillo, M.A.; López-de-Ipiña, D.; Matute, H. Measuring software timing errors in the presentation of visual stimuli in cognitive neuroscience experiments. PLoS ONE
**2014**, 9, e85108. [Google Scholar] [CrossRef] - Rastle, K.; Davis, M.H. On the complexities of measuring naming. J. Experiment. Psychol. Hum. Percept. Perform.
**2002**, 28, 307. [Google Scholar] [CrossRef] - Rueda, M.R.; Fan, J.; McCandliss, B.D.; Halparin, J.D.; Gruber, D.B.; Lercari, L.P.; Posner, M.I. Development of attentional networks in childhood. Neuropsychologia
**2004**, 42, 1029. [Google Scholar] [CrossRef] [PubMed] - Fan, J.; McCandliss, B.D.; Sommer, T.; Raz, A.; Posner, M.I. Testing the efficiency and independence of attentional networks. J. Cog. Neurosci.
**2002**, 14, 340. [Google Scholar] [CrossRef] [PubMed] - Posner, M.I.; Dehaene, S. Attentional networks. Trends Neurosci.
**1994**, 17, 75. [Google Scholar] [CrossRef] - Posner, M.I.; Raichle, M.E. Images of Mind; Scientific American Library: New York, NY, USA, 1994. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables; Dover Publications Inc.: New York, NY, USA, 1965. [Google Scholar]
- Doob, J.L. Stochastic Processes; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1966. [Google Scholar]
- Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math.
**1944**, 2, 164. [Google Scholar] [CrossRef] [Green Version] - Marquardt, D. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math.
**1963**, 11, 431. [Google Scholar] [CrossRef] - Castro-Palacio, J.C.; Isidro, J.M.; Navarro-Pardo, E.; Velazquez, L.; Fernández-de-Córdoba, P. Monte Carlo Simulation of a Modified Chi Distribution with Unequal Variances in the Generating Gaussians. A Discrete Methodology to Study Collective Response Times. Mathematics
**2021**, 9, 77. [Google Scholar] [CrossRef] - Del-Prado-Martín, F. Macroscopic thermodynamics of reaction times. J. Math. Psychol.
**2011**, 55, 302. [Google Scholar] [CrossRef] - Collell, G.; Fauquet, J. Brain activity and cognition: A connection from thermodynamics and information theory. Front. Psychol.
**2015**, 6, PMC4468356. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Tsallis, A.C.; Tsallis, C.; Magalhaes, A.C.N.; Tamarit, F.A. Human and computer learning: An experimental study. Complexus
**2003**, 1, 181–189. [Google Scholar] [CrossRef] - Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys.
**1988**, 52, 479–487. [Google Scholar] [CrossRef]

**Figure 1.**Probability distributions of the individuals response times and average curve (blue dotted line).

**Figure 2.**Probability distributions of the dimensionless moments calculated from 24,192 experimental reaction times over a sample of 168 children are shown in columns. The mean is shown in panel (

**a**), the standard deviation is in panel (

**b**) and the skewness is in panel (

**c**). The ${R}^{2}$ coefficients of the fittings (red solid lines) are also shown.

**Figure 3.**Maxwell–Boltzmann-like distribution of the reaction times of a system of individuals in panel (

**a**) and the corresponding entropy density in panel (

**b**). Each participant is represented with a blue open circle. The data shown in this figure involved 24,192 experimental reaction times over a sample of 168 children. The coefficient of determination of the fit, ${R}^{2}$, is also shown. As an example, 50% of the children have been represented by a patterned region in panel (

**b**).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Castro-Palacio, J.C.; Fernández-de-Córdoba, P.; Isidro, J.M.; Sahu, S.; Navarro-Pardo, E.
Human Reaction Times: Linking Individual and Collective Behaviour Through Physics Modeling. *Symmetry* **2021**, *13*, 451.
https://doi.org/10.3390/sym13030451

**AMA Style**

Castro-Palacio JC, Fernández-de-Córdoba P, Isidro JM, Sahu S, Navarro-Pardo E.
Human Reaction Times: Linking Individual and Collective Behaviour Through Physics Modeling. *Symmetry*. 2021; 13(3):451.
https://doi.org/10.3390/sym13030451

**Chicago/Turabian Style**

Castro-Palacio, Juan Carlos, Pedro Fernández-de-Córdoba, J. M. Isidro, Sarira Sahu, and Esperanza Navarro-Pardo.
2021. "Human Reaction Times: Linking Individual and Collective Behaviour Through Physics Modeling" *Symmetry* 13, no. 3: 451.
https://doi.org/10.3390/sym13030451