Entanglement of General Two-Qubit States in a Realistic Framework
Abstract
:1. Introduction
2. Entanglement of an Arbitrary State of a System of Two Qubits
3. More General Non-Orthogonal States of Two Qubits in the Context of SCSs
- (1)
- , which displays a mixed state with zero entanglement ().
- (2)
- , which corresponds to a mixed state defined as a statistical mixture of a maximally entangled state and a separable state with concurrence
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschafen 1935, 23, 807. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bell, J.S. On the Einstein Podolsky Rosen paradox. Physics 1964, 1, 195. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145. [Google Scholar] [CrossRef] [Green Version]
- DiVincenzo, D.P. The Physical Implementation of Quantum Computation. Fort. Phys. 2000, 48, 9. [Google Scholar]
- Wootters, W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998, 80, 2245. [Google Scholar] [CrossRef] [Green Version]
- Hill, S.; Wootters, W.K. Entanglement of a Pair of Quantum Bits. Phys. Rev. Lett. 1997, 78, 5022. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Bernstein, H.J.; Popescu, S.; Schumacher, B. Concentrating partial entanglement by local operations. Phys. Rev. A 1996, 53, 2046. [Google Scholar] [CrossRef] [Green Version]
- Peres, A. Separability Criterion for Density Matrices. Phys. Lett. 1996, 77, 1413. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Rau, A.R.P.; Alber, G. Quantum discord for two-qubit X states. Phys. Rev. A 2010, 81, 042105. [Google Scholar] [CrossRef] [Green Version]
- Horodecki, M.; Horodecki, P.; Horodecki, R. Separability of mixed states: Necessary and sufficient conditions. Phys. Lett. A 1996, 223, 1. [Google Scholar] [CrossRef] [Green Version]
- Berrada, K.; Eleuch, H. Noncommutative deformed cat states under decoherence. Phys. Rev. D 2019, 100, 016020. [Google Scholar] [CrossRef]
- Berrada, K.; Abdel-Khalek, S. Entanglement of atom–field interaction for nonlinear optical fields. Phys. E Low-Dimens. Syst. Nanostruct. 2011, 44, 628–634. [Google Scholar] [CrossRef]
- Ishizaka, S.; Hiroshim, T. Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A 2000, 62, 022310. [Google Scholar] [CrossRef] [Green Version]
- Verstraete, F.; Audenaert, K.; De Moor, B. Maximally entangled mixed states of two qubits. Phys. Rev. A 2001, 64, 012316. [Google Scholar] [CrossRef] [Green Version]
- Eleuch, H.; Bennaceur, R. Nonlinear dissipation and the quantum noise of light in semiconductor microcavities. J. Opt. B Quantum Semiclass. Opt. 2004, 6, 189. [Google Scholar] [CrossRef]
- Abdel-Khalek, S.; Berrada, K.; Ooi, C.H.R. Beam splitter entangler for nonlinear bosonic fields. Laser Phys. 2014, 22, 1449–1454. [Google Scholar] [CrossRef]
- Abbott, A.A.; Alzieu, P.-L.; Hall, M.J.W.; Branciard, C. Tight State-Independent Uncertainty Relations for Qubits. Mathematics 2016, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger, E. Der stetige Übergang von der Mikro- zur Makromechanik. Naturwissenschafter 1926, 14, 664. [Google Scholar]
- Glauber, R.J. Coherent and Incoherent States of the Radiation Field. Phys. Rev. 1963, 131, 2766. [Google Scholar] [CrossRef]
- Perelomov, A.M. Coherent states for arbitrary Lie group. Commun. Math. Phys. 1972, 26, 222. [Google Scholar] [CrossRef] [Green Version]
- Perelomov, A.M. Generalized Coherent States and Their Applications; Springer: New York, NY, USA, 1986. [Google Scholar]
- Klauder, J.R.; Skagertam, B. Coherent States: Application in Physics and Mathematical Physics; World Scientific: Singapore, 1985. [Google Scholar]
- Zhang, W.-M.; Feng, D.H. Coherent states: Theory and some applications. Rev. Mod. Phys. 1990, 62, 867. [Google Scholar] [CrossRef]
- Inomata, A.; Kuratsuji, H.; Gerry, C. Path Integrals and Coherent States of SU(2) and SU(1; 1); World Scientific: Singapore, 1992. [Google Scholar]
- Loh, Y.L.; Kim, M. Visualizing spin states using the spin coherent state representation. Am. J. Phys. 2014, 83, 30–35. [Google Scholar] [CrossRef]
- Valencia, N.H.; Goel, S.; McCutcheon, W.; Defienne, H.; Malik, M. Unscrambling entanglement through a complex medium. Nat. Phys. 2020, 16, 1112–1116. [Google Scholar] [CrossRef]
- Berrada, K.; Chafik, A.; Eleuch, H.; Hassouni, Y. Concurrence in the framework of coherent states. Quantum Inf. Process. 2010, 9, 13–26. [Google Scholar] [CrossRef]
- Berrada, K.; El Baz, M.; Eleuch, H.; Hassouni, Y. A comparative study of negativity and concurrence based on spin coherent states. Inter. J. Mod. Phys. C 2010, 21, 291. [Google Scholar] [CrossRef]
- Wootters, W.K. Entanglement of formation and concurrence. Quantum Inf. Comput. 2001, 1, 27. [Google Scholar]
- Ma, J.; Wang, X.; Sun, C.P.; Nori, F. Quantum spin squeezing. Phys. Rep. 2011, 509, 89. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, M. Coherent State Path Integral for the Harmonic Oscillator and a Spin Particle in a Constant Magnetic Field; University of British Columbia: Vancouver, BC, Canada, 1989. [Google Scholar]
- Gerry, C.C.; Benmoussa, A.; Hach, E.E.; Albert, J. Maximal violations of a Bell inequality by entangled spin-coherent states. Phys. Rev. A 2009, 79, 022111. [Google Scholar] [CrossRef] [Green Version]
- Gerry, C.C.; Benmoussa, A. Spin squeezing via ladder operations on an atomic coherent state. Phys. Rev. A 2008, 77, 062341. [Google Scholar] [CrossRef]
- Eisert, J.; Plenio, M. A comparison of entanglement measure. J. Mod. Opt. 1999, 46, 145–154. [Google Scholar] [CrossRef]
- Miranowicz, A.; Ishizaka, S.; Horst, B.; Grudka, A. Comparison of the relative entropy of entanglement and negativity. Phys. Rev. A 2008, 78, 052308. [Google Scholar] [CrossRef] [Green Version]
- Horodecki, M.; Horodecki, P.; Horodecki, R. Quantum Information: An Introduction to Basic Theoretical Concept and Experiments; Springer: Berlin/Heidelberg, Germany, 2001; p. 151. [Google Scholar]
- Liang, J.; Zhang, C. Study on Non-Commutativity Measure of Quantum Discord. Mathematics 2019, 7, 543. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.T.; Antoine, J.-P.; Gazeau, J.-P. Coherent States, Wavelets and Their Generalization; Springer: New York, NY, USA, 2000. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Khalek, S.; Berrada, K.; Khalil, E.M.; Almalki, F. Entanglement of General Two-Qubit States in a Realistic Framework. Symmetry 2021, 13, 386. https://doi.org/10.3390/sym13030386
Abdel-Khalek S, Berrada K, Khalil EM, Almalki F. Entanglement of General Two-Qubit States in a Realistic Framework. Symmetry. 2021; 13(3):386. https://doi.org/10.3390/sym13030386
Chicago/Turabian StyleAbdel-Khalek, Sayed, Kamal Berrada, Eied M. Khalil, and Fadhel Almalki. 2021. "Entanglement of General Two-Qubit States in a Realistic Framework" Symmetry 13, no. 3: 386. https://doi.org/10.3390/sym13030386