# Sliding Mode Control and Geometrization Conjecture in Seismic Response

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Sliding Mode Control

## 3. Analysis and Results

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Acknowledgments

## Conflicts of Interest

## References

- Aldemir, U.; Bakioglu, M.; Akhiev, S.S. Optimal control of linear buildings under seismic excitations. Earthq. Eng. Struct. Dyn.
**2001**, 30, 835–851. [Google Scholar] [CrossRef] - Drakunov, S.V.; Utkin, V.I. Sliding mode control in dynamic systems. Int. J. Control
**1992**, 55, 1029–1037. [Google Scholar] [CrossRef] - Lynch, J.P.; Law, K.H. Market-based control of linear structural systems. Earthq. Eng. Struct. Dyn.
**2002**, 31, 1855–1877. [Google Scholar] [CrossRef] [Green Version] - Edwards, C.; Spurgeon, S.K. Sliding Mode Control; Taylor & Francis Ltd.: Oxfordshire, UK, 1998. [Google Scholar]
- Bhatti, A.I. Advanced Sliding Mode Controllers for Industrial Applications. Ph.D. Thesis, University of Leicester, Leicester, UK, 1998. [Google Scholar]
- Utkin, V.I. Sliding Modes in Control and Optimization; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Utkin, V.I.; Poznyak, A.S. Advances in Sliding Mode Control; Adaptive Sliding Mode Control; Springer: Berlin/Heidelberg, Germany, 2013; pp. 21–53. [Google Scholar]
- Plestan, Y.; Shtessel, V.; Brégeault, V.; Poznyak, A. New methodologies for adaptive sliding mode control. Int. J. Control
**2010**, 83, 1907–1919. [Google Scholar] [CrossRef] [Green Version] - Golembo, B.Z.; Yemelyanov, S.V.; Utkin, V.I.; Shubladze, A.M. Application of piecewise-continuous dynamic systems to filtering problems. Autom. Remote Control
**1976**, 37, 369–377. [Google Scholar] - Slotine, J.J.; LI, W. Applied Nonlinear Control; Prentice-Hall: Englewood Cliffs, NJ, USA, 2010. [Google Scholar]
- Hamilton, R. The Ricci flow on surfaces. Contemp. Math.
**1988**, 71, 237–262. [Google Scholar] - Perelman, G. The entropy formula for the Ricci flow and its geometric applications. arXiv
**2003**, arXiv:Math.DG/0211159. [Google Scholar] - Perelman, G. Ricci flow with surgery on three-manifolds. arXiv
**2002**, arXiv:math.DG/0303109. [Google Scholar] - Chen, B.-Y. A survey on Ricci solitons on Riemannian submanifolds. Contemp. Math.
**2016**, 674, 27–39. [Google Scholar] - Ivey, T. Ricci solitons on compact three-manifolds. Diff. Geom. Appl.
**1993**, 3, 301–307. [Google Scholar] [CrossRef] [Green Version] - Ivey, T. New examples of complete Ricci solitons. Proc. Amer. Math. Soc.
**1994**, 122, 241–245. [Google Scholar] [CrossRef] - Baird, P.; Danielo, L. Three-dimensional Ricci solitons which project to surfaces. J. Fur Die Reine Und Angew. Math.
**2007**, 608, 65–91. [Google Scholar] [CrossRef] [Green Version] - Chiroiu, V.; Munteanu, L.; Bratu, P. Ricci Soliton equation with applications to Zener schematics. In Proceedings of the International Conference Riemannian Geometry and Applications—RIGA 2021, Bucharest, Romania, 15–17 January 2021. [Google Scholar]
- Munteanu, L.; Chiroiu, V.; Bratu, P. On the Ricci soliton equation-Part I. Cnoidal Method. Rom. J. Mech.
**2020**, 5, 22–42. [Google Scholar] - Sheridan, N. Hamilton’s Ricci Flow. Ph.D. Thesis, The University of Melbourne, Dept. of Mathematics and Statistics, Parkville, VIC, Australia, 2006. [Google Scholar]
- Cao, H.-D.; Zhu, X.-P. A complete proof of the Poincare and geometrization conjectures—Application of the Hamilton-Perelman theory of the Ricci flow. Asian J. Math.
**2006**, 10, 165–492. [Google Scholar] [CrossRef] [Green Version] - Hung, J.Y.; Gao, W.; Hung, J.C. Variable Structure Control: A Survey. IEEE Trans. Ind. Electron.
**1993**, 40, 2–21. [Google Scholar] [CrossRef] [Green Version] - Munteanu, L.; Chiroiu, V.; Sireteanu, T. On the response of small buildings to vibrations. Nonlinear Dyn.
**2013**, 73, 1527–1543. [Google Scholar] [CrossRef] - Munteanu, L.; Brişan, C.; Chiroiu, V.; Dumitriu, D.; Ioan, R. Chaos-hyperchaos transition in a class of models governed by Sommerfeld effect. Nonlinear Dyn.
**2014**, 78, 1877–1889. [Google Scholar] [CrossRef] - Yanchuk, S.; Kapitaniak, T. Chaos-hyperchaos transition in coupled Rossler systems. Physics Lett. A
**2001**, 290, 139–144. [Google Scholar] [CrossRef] - Adachi, F.; Yoshitomi, S.; Tsuji, M.; Takewaki, I. Enhanced reduced model for elastic earthquake response analysis of a class of mono-symmetric shear building structures with constant eccentricity. Soil Dyn. Earthq. Eng.
**2011**, 31, 1040–1050. [Google Scholar] [CrossRef] [Green Version] - Chen, L.; Shi, D.; Wang, R.; Zhou, H. Energy Conservation Analysis and Control of Hybrid Active Semiactive Suspension with Three Regulating Damping Levels. Shock Vib. Vol.
**2016**. [Google Scholar] [CrossRef] [Green Version] - Jiménez-Fabián, R.; Alvarez-Icaza, L. An adaptive observer for a shear building with an energy-dissipation device. Control Eng. Practice
**2010**, 18, 331–338. [Google Scholar] [CrossRef] - Solarino, F.; Giresini, L.; Oliveira, D.V. Mitigation of amplified response of restrained rocking walls through horizontal dampers. In Proceedings of the 11th International Conference on Structural Dynamic EURODYN, Athens, Greece, 23–26 November 2020; Volume 2, pp. 4292–4303. [Google Scholar]
- Stochino, F.; Fadda, M.L.; Mistretta, F. Assessment of RC bridges integrity by means of low-cost investigations. Frat. Integrita Strutt.
**2018**, 12, 216–225. [Google Scholar] [CrossRef] [Green Version]

**Figure 4.**Lateral loads versus displacements in the structure with no/with sliding control; (

**a**) first floor; (

**b**) second floor, (

**c**) third floor.

**Figure 5.**Time dependence of $\mathrm{ln}(D(\mathsf{\tau})/{D}_{0})$ for $r\in (5,5.8)$ and $r\in (5.8,7)$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Munteanu, L.; Dumitriu, D.; Brisan, C.; Bara, M.; Chiroiu, V.; Nedelcu, N.; Rugina, C.
Sliding Mode Control and Geometrization Conjecture in Seismic Response. *Symmetry* **2021**, *13*, 353.
https://doi.org/10.3390/sym13020353

**AMA Style**

Munteanu L, Dumitriu D, Brisan C, Bara M, Chiroiu V, Nedelcu N, Rugina C.
Sliding Mode Control and Geometrization Conjecture in Seismic Response. *Symmetry*. 2021; 13(2):353.
https://doi.org/10.3390/sym13020353

**Chicago/Turabian Style**

Munteanu, Ligia, Dan Dumitriu, Cornel Brisan, Mircea Bara, Veturia Chiroiu, Nicoleta Nedelcu, and Cristian Rugina.
2021. "Sliding Mode Control and Geometrization Conjecture in Seismic Response" *Symmetry* 13, no. 2: 353.
https://doi.org/10.3390/sym13020353