Multi-Objective Assembly Line Balancing Problem with Setup Times Using Fuzzy Goal Programming and Genetic Algorithm
Abstract
:1. Introduction
2. Related Works
3. Research Methods
3.1. Assumptions and Notations
- The assembly line mass produces one homogeneous product.
- The production process is given, and the processing jobs are connected with precedence relations.
- The production process has a serial line layout with Kmax workstations.
- A setup time sk is required for each workstation.
- All workstations are equally equipped with machines and workers.
- No assignment restrictions are present except for the precedence relations.
- The job processing time is independent of the station at which the job is performed.
- The processing time of each job is known and deterministic.
- A job can only be processed in a single workstation at a time.
- A workstation can only process a single job at a time.
- A workstation can perform more than one job.
- A job can be performed in any workstation.
- The cycle time in a workstation is the sum of the setup time and the processing time.
- Notations
- j, u, v Job (j = 1,2,…, J).
- k
- Workstation (k = 1,2,…, K).
- i
- Objective (i = 1,2,…, I).
- tj
- Processing time of job j.
- Ω
- Set of precedence relations; (u,v)∈Ω if and only if job u is an immediate predecessor of job v.
- TP
- Total job processing time.
- PC
- Production planning cycle.
- sk
- Setup time of workstation k.
- Kmax
- Maximum number of workstations.
- CT
- Cycle time.
- NW
- Number of workstations.
- WV
- Workload variance.
- TD
- Idle time of all workstations.
- Xjk
- A binary variable, equal to 1 if job j is processed in workstation k.
- Yk
- A binary variable, equal to 1 if workstation k is selected for processing.
- Tk
- Completion time of workstation k.
- fi(Zi)
- Objective function, where Zi is the objective.
3.2. Fuzzy Multi-Objective Linear Programming Model
(1) | ||
(2) | ||
(3) | ||
(4) | ||
(5) | ||
(6) | ||
(7) | ||
(8) | ||
, | k = 1,2,…, K | (9) |
(10) | ||
, | k = 1,2,…, K | (11) |
, | j = 1,2,…, J | (12) |
, | (13) | |
j = 1,2,…, J, k = 1,2,…, K | (14) | |
k = 1,2,…, K | (15) |
for maximization objective | (16) | |
for minimization objective | (17) | |
for target objective | (18) |
3.3. Genetic Algorithm for Assembly Line Balancing Problem
- Step 1.
- Initial population of chromosomes
- Step 2.
- Coding scheme
- Step 3.
- Fitness function evaluation
- Step 4.
- Reproduction operation
- Step 5.
- New population generation
- Step 6.
- Termination
4. Case Studies
4.1. Case Introduction
4.2. Case 1
4.2.1. Single Objective Linear Programming Model
4.2.2. Fuzzy Multi-Objective Linear Programming Model
- Step 1.
- Use the results obtained from the single objective linear programming models to set the upper and lower bound for each objective. The fuzzy membership function for cycle time, number of workstations, workload variance, and workstation idle time are , , , and , respectively.
- Step 2.
- Transform the fuzzy multi-objective linear programming model into a single objective linear programming model. The four objectives are transformed into one single objective:
- Step 3.
- Formulate the fuzzy multi-objective linear programming model with satisfaction level λ, as follows:
4.2.3. Genetic Algorithm Model
4.3. Case 2
4.4. Case 3
4.5. Case 4
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sample Problem | Number of Jobs | Maximum Number of Workstations | Workstation Setup Time | Total Processing Time | |
---|---|---|---|---|---|
Case 5 | Jackson [31] | 11 | 6 | 5 min | 46 min |
Case 6 | Rosenberg and Ziegler [32] | 25 | 8 | 6 min | 125 min |
Case 7 | Gunther et al. [33] | 35 | 10 | 7 min | 484 min |
Case 8 | Pinarbasi et al. [14] | 37 | 10 | 7 min | 908 min |
Case 9 | Rashid et al. [19] | 54 | 11 | 9 min | 2864 min |
Job | Predecessor | Processing Time | Job | Predecessor | Processing Time |
---|---|---|---|---|---|
1 | - | 6 | 7 | 3, 4, 5 | 3 |
2 | 1 | 2 | 8 | 6 | 6 |
3 | 1 | 5 | 9 | 7 | 5 |
4 | 1 | 7 | 10 | 8 | 5 |
5 | 1 | 1 | 11 | 9, 10 | 4 |
6 | 2 | 2 |
Job | Predecessor | Processing Time | Job | Predecessor | Processing Time |
---|---|---|---|---|---|
1 | - | 4 | 14 | 13 | 3 |
2 | - | 3 | 15 | 12 | 5 |
3 | 1, 2 | 9 | 16 | 14 | 3 |
4 | 3 | 5 | 17 | 15 | 13 |
5 | 4 | 9 | 18 | 16, 17 | 5 |
6 | 5 | 4 | 19 | 14 | 2 |
7 | 6 | 8 | 20 | 14 | 3 |
8 | 4 | 7 | 21 | 20 | 7 |
9 | 8 | 5 | 22 | 19, 21 | 5 |
10 | 6, 9 | 1 | 23 | 17 | 3 |
11 | 7, 8 | 3 | 24 | 21 | 8 |
12 | 7 | 1 | 25 | 18, 20, 23 | 4 |
13 | 9, 11 | 5 |
Job | Predecessor | Processing Time | Job | Predecessor | Processing Time |
---|---|---|---|---|---|
1 | - | 29 | 19 | 18 | 19 |
2 | 1 | 3 | 20 | 17 | 29 |
3 | 2 | 5 | 21 | 16, 20 | 8 |
4 | 3 | 22 | 22 | 21 | 10 |
5 | 1 | 5 | 23 | 22 | 16 |
6 | 5 | 14 | 24 | 23 | 23 |
7 | 1, 6 | 2 | 25 | 21 | 5 |
8 | 6 | 5 | 26 | 25 | 5 |
9 | 8 | 22 | 27 | 24, 26 | 5 |
10 | 1 | 30 | 28 | 11, 13, 27 | 40 |
11 | 4 | 23 | 29 | 28 | 2 |
12 | 1 | 30 | 30 | 21 | 5 |
13 | 9 | 23 | 31 | 30 | 5 |
14 | 7 | 2 | 32 | 21, 31 | 1 |
15 | 14 | 19 | 33 | 11, 13, 27, 32 | 40 |
16 | 15 | 29 | 34 | 27 | 2 |
17 | - | 2 | 35 | 33 | 2 |
18 | 7, 12 | 2 |
Job | Predecessor | Processing Time | Job | Predecessor | Processing Time |
---|---|---|---|---|---|
1 | - | 23 | 20 | 19 | 13 |
2 | - | 12 | 21 | 16 | 14 |
3 | 1, 2 | 35 | 22 | 17 | 14 |
4 | - | 12 | 23 | - | 12 |
5 | 1, 4 | 35 | 24 | 22, 23 | 38 |
6 | 3, 5, 8, 10 | 7 | 25 | 21 | 38 |
7 | - | 12 | 26 | - | 10 |
8 | 1, 7 | 35 | 27 | 26 | 18 |
9 | - | 12 | 28 | 24, 25, 27 | 22 |
10 | 1, 9 | 35 | 29 | 28 | 15 |
11 | 6 | 22 | 30 | 28 | 19 |
12 | 6 | 16 | 31 | 17, 18 | 38 |
13 | 6 | 54 | 32 | 31 | 43 |
14 | 12, 13 | 36 | 33 | 32 | 10 |
15 | 6 | 26 | 34 | 11, 14, 15, 20, 29, 30, 33 | 5 |
16 | 6 | 42 | 35 | 34 | 20 |
17 | 6 | 42 | 36 | 35 | 16 |
18 | 6 | 26 | 37 | 36 | 55 |
19 | 6 | 26 |
Job | Predecessor | Processing Time | Job | Predecessor | Processing Time |
---|---|---|---|---|---|
1 | - | 159 | 28 | 26, 27 | 23 |
2 | 1 | 16 | 29 | - | 24 |
3 | 1 | 29 | 30 | 29 | 46 |
4 | 1 | 16 | 31 | 29 | 16 |
5 | 1 | 13 | 32 | 29 | 19 |
6 | 1 | 20 | 33 | 29 | 75 |
7 | 1 | 23 | 34 | 30, 31, 32, 33 | 18 |
8 | 1 | 122 | 35 | 3, 4, 5, 6, 10, 19 | 45 |
9 | 2, 7 | 112 | 36 | 28, 34 | 151 |
10 | 9 | 154 | 37 | 36 | 21 |
11 | - | 90 | 38 | 35, 36 | 41 |
12 | 11 | 57 | 39 | 36 | 42 |
13 | 12 | 12 | 40 | 35, 36 | 40 |
14 | 12 | 15 | 41 | 36 | 18 |
15 | 8, 13, 14 | 142 | 42 | 35, 36 | 15 |
16 | 15 | 87 | 43 | 37, 38, 39, 40, 41, 42 | 41 |
17 | 15 | 59 | 44 | 40/41 | 33 |
18 | 15 | 23 | 45 | 42 | 38 |
19 | 8 | 23 | 46 | 37, 38 | 36 |
20 | 16, 17, 18 | 25 | 47 | 37, 38 | 53 |
21 | 20 | 49 | 48 | - | 125 |
22 | 20 | 24 | 49 | 34, 39 | 92 |
23 | 20 | 27 | 50 | 34, 39 | 57 |
24 | 20 | 21 | 51 | 34, 39 | 71 |
25 | - | 33 | 52 | 34, 39 | 44 |
26 | 25 | 61 | 53 | - | 50 |
27 | 25 | 76 | 54 | 43, 44, 45, 46, 47, 48, 49, 53 | 142 |
Objective | Objective Value | Objective Function |
---|---|---|
Z1 | 23 | = 0.72 |
Z2 | 2 | = 0.80 |
Z3 | 117.56 | = 0.64 |
Z4 | 92 | = 0.68 |
Total satisfaction level λ = 0.64 |
Objective | Objective Value | Objective Function |
---|---|---|
Z1 | 30 | = 0.55 |
Z2 | 5 | = 0.50 |
Z3 | 114.14 | = 0.55 |
Z4 | 55 | = 0.55 |
Total satisfaction level λ = 0.50 |
Objective | Objective Value | Objective Function |
---|---|---|
Z1 | 162 | = 0.74 |
Z2 | 3 | = 0.77 |
Z3 | 5466 | = 0.74 |
Z4 | 1136 | = 0.74 |
Total satisfaction level λ = 0.74 |
Objective | Objective Value | Objective Function |
---|---|---|
Z1 | 304 | = 0.72 |
Z2 | 3 | = 0.78 |
Z3 | 19238.56 | = 0.74 |
Z4 | 2132 | = 0.74 |
Total satisfaction level λ = 0.72 |
Objective | Objective Value | Objective Function |
---|---|---|
Z1 | 955 | = 0.71 |
Z2 | 3 | = 0.80 |
Z3 | 180771.3 | = 0.74 |
Z4 | 7641 | = 0.76 |
Total satisfaction level λ = 0.71 |
References
- Kucukkoc, I.; Zhang, D.Z. A mathematical model and genetic algorithm-based approach for parallel two-sided assembly line balancing problem. Prod. Plan. Control. 2015, 26, 874–894. [Google Scholar] [CrossRef] [Green Version]
- Özcan, U.; Toklu, B. Multiple-criteria decision-making in two-sided assembly line balancing: A goal programming and a fuzzy goal programming models. Comput. Oper. Res. 2009, 36, 1955–1965. [Google Scholar] [CrossRef]
- Salveson, M.E. The assembly line balancing problem. J. Ind. Eng. 1955, 6, 18–25. [Google Scholar]
- Erel, E.; Gokcen, H. Shortest-route formulation of mixed-model assembly line balancing problem. Eur. J. Oper. Res. 1999, 116, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Fathi, M.; Fontes, D.B.M.M.; Moris, M.U.; Ghobakhloo, M. Assembly line balancing problem: A comparative evaluation of heuristics and a computational assessment of objectives. J. Model. Manag. 2018, 13, 455–474. [Google Scholar] [CrossRef] [Green Version]
- Baybars, I. A survey of exact algorithms for the simple assembly line balancing problem. Manag. Sci. 1986, 32, 909–932. [Google Scholar] [CrossRef]
- Scholl, A. Balancing and Sequencing Assembly Lines, 2nd ed.; Physica-Verlag: Heidelberg, Germany, 1999. [Google Scholar]
- Becker, C.; Scholl, A. A survey on problems and methods in generalized assembly line balancing. Eur. J. Oper. Res. 2006, 168, 694–715. [Google Scholar] [CrossRef]
- Haq, A.N.; Rengarajan, K.; Jayaprakash, J. A hybrid genetic algorithm approach to mixed-model assembly line balancing. Int. J. Adv. Manuf. Technol. 2005, 28, 337–341. [Google Scholar] [CrossRef]
- Zhang, H.-Y. An improved immune algorithm for simple assembly line balancing problem of type 1. J. Algorithms Comput. Technol. 2017, 11, 317–326. [Google Scholar] [CrossRef]
- Taha, R.B.; El-Kharbotly, A.K.; Sadek, Y.M.; Afia, N.H. A genetic algorithm for solving two-sided assembly line balancing problems. Ain Shams Eng. J. 2011, 2, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Cerqueus, A.; Delorme, X. A branch-and-bound method for the bi-objective simple line assembly balancing problem. Int. J. Prod. Res. 2018, 57, 5640–5659. [Google Scholar] [CrossRef]
- Ritt, M.; Costa, A.M. Improved integer programming models for simple assembly line balancing and related problems. Int. Trans. Oper. Res. 2015, 25, 1345–1359. [Google Scholar] [CrossRef] [Green Version]
- Pinarbasi, M.; Alakas, H.M.; Yuzukirmizi, M. A constraint programming approach to type-2 assembly line balancing problem with assignment restrictions. Assem. Autom. 2019, 39, 813–826. [Google Scholar] [CrossRef]
- Mardani-Fard, H.A.; Hadi-Vencheh, A.; Mahmoodirad, A.; Niroomand, S. An effective hybrid goal programming approach for multi-objective straight assembly line balancing problem with stochastic parameters. Oper. Res. 2018, 20, 1939–1976. [Google Scholar] [CrossRef]
- Abu Bakar, N.; Ramli, M.F.; Zakaria, M.Z.; Sin, T.C.; Masran, H. Solving assembly line balancing problem using heuristic: A case study of power transformer in electrical industry. Indones. J. Electr. Eng. Comput. Sci. 2020, 17, 850–857. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Kucukkoc, I.; Tang, Q. A comparative study of exact methods for the simple assembly line balancing problem. Soft Comput. 2020, 24, 11459–11475. [Google Scholar] [CrossRef]
- Li, Z.; Janardhanan, M.N.; Tang, Q. Multi-objective migrating bird optimization algorithm for cost-oriented assembly line balancing problem with collaborative robots. Neural Comput. Appl. 2021, 1–22. [Google Scholar] [CrossRef]
- Rashid, M.F.F.A.; Rose, A.N.M.; Mohamed, N.M.Z.N.; Romlay, F.R.M. Improved moth flame optimization algorithm to op-timize cost-oriented two-sided assembly line balancing. Eng. Comput. 2020, 37, 638–663. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kim, Y.; Kim, Y.J. Two-sided assembly line balancing: A genetic algorithm approach. Prod. Plan. Control. 2000, 11, 44–53. [Google Scholar] [CrossRef]
- Kim, Y.K.; Song, W.S.; Kim, J.H. A mathematical model and a genetic algorithm for two-sided assembly line balancing. Comput. Oper. Res. 2009, 36, 853–865. [Google Scholar] [CrossRef]
- Tanhaie, F.; Rabbani, M.; Manavizadeh, N. Simultaneous balancing and worker assignment problem for mixed-model as-sembly lines in a make-to-order environment considering control points and assignment restrictions. J. Model. Manag. 2020, 15, 1–34. [Google Scholar] [CrossRef]
- Eslamipoor, R.; Nobari, A. A mathematical model for an integrated assembly line regarding learning and fatigue effects. Robotica 2021, 1–17. [Google Scholar] [CrossRef]
- Zimmermann, H.-J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1978, 1, 45–55. [Google Scholar] [CrossRef]
- Zwick, R.; Zimmermann, H.-J. Fuzzy set theory and its applications. Am. J. Psychol. 1993, 106, 304. [Google Scholar] [CrossRef]
- Ghaffar, A.R.A.; Hasan, G.; Ashraf, Z.; Khan, M.F. Fuzzy goal programming with an imprecise intuitionistic fuzzy preference relations. Symmetry 2020, 12, 1548. [Google Scholar] [CrossRef]
- Kang, H.-Y.; Lee, A.H. Inventory replenishment model using fuzzy multiple objective programming: A case study of a high-tech company in Taiwan. Appl. Soft Comput. 2010, 10, 1108–1118. [Google Scholar] [CrossRef]
- Qi, J.G.; Burns, G.R.; Harrison, D.K. The application of parallel multipopulation genetic algorithms to dynamic job-shop scheduling. Int. J. Adv. Manuf. Technol. 2000, 16, 609–615. [Google Scholar] [CrossRef]
- Lee, A.H.I.; Kang, H.-Y.; Lai, C.-M. Solving lot-sizing problem with quantity discount and transportation cost. Int. J. Syst. Sci. 2013, 44, 760–774. [Google Scholar] [CrossRef]
- Kang, H.-Y.; Pearn, W.L.; Chung, I.-P.; Lee, A.H.I. An enhanced model for the integrated production and transportation problem in a multiple vehicles environment. Soft Comput. 2015, 20, 1415–1435. [Google Scholar] [CrossRef]
- Jackson, J.R. An extension of Johnson’s results on job IDT scheduling. Nav. Res. Logist. Q. 1956, 3, 201–203. [Google Scholar] [CrossRef]
- Rosenberg, O.; Ziegler, H. A comparison of heuristic algorithms for cost-oriented assembly line balancing. Math. Methods Oper. Res. 1992, 36, 477–495. [Google Scholar] [CrossRef]
- E Gunther, R.; Johnson, G.D.; Peterson, R.S.; Günther, R. Currently practiced formulations for the assembly line balance problem. J. Oper. Manag. 1983, 3, 209–221. [Google Scholar] [CrossRef]
Number of Jobs | Maximum Number of Workstations | Workstation Setup Time | Total Processing Time | |
---|---|---|---|---|
Case 1 | 10 | 5 | 5 min | 94 min |
Case 2 | 20 | 8 | 6 min | 200 min |
Case 3 | 30 | 10 | 7 min | 360 min |
Case 4 | 66 | 12 | 9 min | 539 min |
Workstation | Processing Time | Setup Time | Cycle Time | Jobs |
---|---|---|---|---|
1 | 19 | 5 | 24 | J1, J2 |
2 | 18 | 5 | 23 | J3, J6 |
3 | 19 | 5 | 24 | J5, J8 |
4 | 17 | 5 | 22 | J4, J7 |
5 | 21 | 5 | 26 | J9, J10 |
Objective | Decision Variable | Objective Value |
---|---|---|
Z1 | CT | 26 |
Z2 | NW | 5 |
Z3 | WV | 1.76 |
Z4 | TD | 11 |
Workstation | Processing Time | Setup Time | Cycle Time | Jobs |
---|---|---|---|---|
1 | 0 | 0 | 0 | |
2 | 0 | 0 | 0 | |
3 | 0 | 0 | 0 | |
4 | 0 | 0 | 0 | |
5 | 94 | 5 | 99 | J1, J2, J3, J4, J5, J6, J7, J8, J9, J10 |
Objective | Decision Variable | Objective Value |
---|---|---|
Z1 | CT | 99 |
Z2 | NW | 1 |
Z3 | WV | 1413.76 |
Z4 | TD | 396 |
Workstation | Processing Time | Setup Time | Cycle Time | Jobs |
---|---|---|---|---|
1 | 19 | 5 | 24 | A1, A2 |
2 | 18 | 5 | 23 | A3, A6 |
3 | 18 | 5 | 23 | A4, A5 |
4 | 18 | 5 | 23 | A7, A8 |
5 | 21 | 5 | 26 | A9, A10 |
Objective | Decision Variable | Objective Value |
---|---|---|
Z1 | CT | 26 |
Z2 | NW | 5 |
Z3 | WV | 1.36 |
Z4 | TD | 11 |
Workstation | Processing Time | Setup Time | Cycle Time | Jobs |
---|---|---|---|---|
1 | 21 | 5 | 26 | J1, J3 |
2 | 17 | 5 | 22 | J2, J4 |
3 | 16 | 5 | 21 | J6, J7 |
4 | 19 | 5 | 24 | J5, J8 |
5 | 21 | 5 | 26 | J9, J10 |
Objective | Decision Variable | Objective Value |
---|---|---|
Z1 | CT | 26 |
Z2 | NW | 5 |
Z3 | WV | 4.16 |
Z4 | TD | 11 |
Decision Variable | Upper Bound | Lower Bound | Deviation | Average |
---|---|---|---|---|
CT | 99 | 26 | 73 | 62.5 |
NW | 5 | 1 | 4 | 3 |
WV | 1413.76 | 1.36 | 1412.4 | 707.56 |
TD | 396 | 11 | 385 | 203.5 |
Workstation | Processing Time | Setup Time | Cycle Time | Jobs |
---|---|---|---|---|
1 | 47 | 5 | 52 | J1, J2, J3, J5, J8 |
2 | ||||
3 | 47 | 5 | 52 | J4, J6, J7, J9, J10 |
4 | ||||
5 |
Objective | Objective Value | Objective Function |
---|---|---|
Z1 | 52 | = 0.64 |
Z2 | 2 | = 0.75 |
Z3 | 530.16 | = 0.63 |
Z4 | 141 | = 0.66 |
Total satisfaction level λ = 0.63 |
N | Pc | Pm | Gmax |
---|---|---|---|
10 | 0.9 | 0.01 | 1000 |
50 | 0.99 | 0.05 | 2000 |
Run | N | Pc | Pm | Gmax | Computation Time | Number of Generations | Fitness Value |
---|---|---|---|---|---|---|---|
1 | 10 | 0.9 | 0.01 | 1000 | 11 | 79 | 0.63 |
2 | 10 | 0.9 | 0.01 | 2000 | 19 | 61 | 0.63 |
3 | 10 | 0.9 | 0.05 | 1000 | 11 | 57 | 0.63 |
4 | 10 | 0.9 | 0.05 | 2000 | 19 | 68 | 0.63 |
5 | 10 | 0.99 | 0.01 | 1000 | 11 | 77 | 0.63 |
6 | 10 | 0.99 | 0.01 | 2000 | 19 | 85 | 0.63 |
7 | 10 | 0.99 | 0.05 | 1000 | 11 | 167 | 0.63 |
8 | 10 | 0.99 | 0.05 | 2000 | 19 | 132 | 0.63 |
9 | 50 | 0.9 | 0.01 | 1000 | 39 | 92 | 0.63 |
10 | 50 | 0.9 | 0.01 | 2000 | 74 | 65 | 0.63 |
11 | 50 | 0.9 | 0.05 | 1000 | 38 | 93 | 0.63 |
12 | 50 | 0.9 | 0.05 | 2000 | 73 | 91 | 0.63 |
13 | 50 | 0.99 | 0.01 | 1000 | 38 | 85 | 0.63 |
14 | 50 | 0.99 | 0.01 | 2000 | 74 | 67 | 0.63 |
15 | 50 | 0.99 | 0.05 | 1000 | 39 | 55 | 0.63 |
16 | 50 | 0.99 | 0.05 | 2000 | 75 | 48 | 0.63 |
Decision Variable | Upper Bound | Lower Bound | Deviation | Average |
---|---|---|---|---|
CT | 206 | 32 | 174 | 119 |
NW | 8 | 1 | 7 | 4.5 |
WV | 4642 | 8.75 | 4633.25 | 2325.375 |
TD | 1400 | 8 | 1392 | 704 |
Workstation | Processing Time | Setup Time | Cycle Time | Jobs |
---|---|---|---|---|
1 | ||||
2 | ||||
3 | ||||
4 | 66 | 6 | 72 | A1, A2, A3, A4, A5, A7 |
5 | ||||
6 | 65 | 6 | 71 | A6, B1, B2, B3, B4, B5, B7 |
7 | 69 | 6 | 75 | A8, A9, A10, B6, B8, B9, B10 |
8 |
Objective | Objective Value | Objective Function |
---|---|---|
Z1 | 75 | = 0.75 |
Z2 | 3 | = 0.71 |
Z3 | 1042.75 | = 0.78 |
Z4 | 352 | = 0.75 |
Total satisfaction level λ = 0.71 |
Decision Variable | Upper Bound | Lower Bound | Deviation | Average |
---|---|---|---|---|
CT | 367 | 43 | 323 | 205 |
NW | 10 | 1 | 9 | 5.5 |
WV | 11664 | 0.7 | 11663.3 | 5832.35 |
TD | 3240 | 1.8 | 3238.2 | 1620.9 |
Workstation | Processing Time | Setup Time | Cycle Time | Jobs |
---|---|---|---|---|
1 | 120 | 7 | 127 | J1, J2, J4, J6, J7, J16, J18, J20, J21, J23, J26 |
2 | ||||
3 | 120 | 7 | 127 | J3, J5, J17, J19, J24, J25, J27, J28 |
4 | ||||
5 | ||||
6 | ||||
7 | ||||
8 | 120 | 7 | 127 | J8, J9, J10, J11, J12, J13, J14, J15, J22, J29, J30 |
9 | ||||
10 |
Objective | Objective Value | Objective Function |
---|---|---|
Z1 | 127 | = 0.74 |
Z2 | 3 | = 0.78 |
Z3 | 3024 | = 0.74 |
Z4 | 840 | = 0.74 |
Total satisfaction level λ = 0.74 |
Decision Variable | Upper Bound | Lower Bound | Deviation | Average |
---|---|---|---|---|
CT | 807 | 75 | 732 | 441 |
NW | 12 | 1 | 11 | 6.5 |
WV | 49,749 | 7 | 49,742 | 24,878 |
TD | 8877 | 12 | 8865 | 4444.5 |
Workstation | Processing Time | Setup Time | Cycle Time | Jobs |
---|---|---|---|---|
1 | 100 | 9 | 109 | J1, J2, J3, J4, J5, J6, J7, J8, J9, J21 |
2 | 140 | 9 | 149 | J46, J47, J48, J49, J50, J51, J52, J53, J54, J55, J56, J57 |
3 | 152 | 9 | 161 | J11, J12, J31, J32, J33, J34, J35, J36, J37, J38, J40, J41 |
4 | 121 | 9 | 130 | J10, J16, J17, J18, J19, J20, J22, J24, J25 |
5 | 166 | 9 | 175 | J13, J14, J15, J23, J26, J27, J28, J29, J30, J39, J42, J43, J44, J45 |
6 | 119 | 9 | 128 | J58, J59, J60, J61, J62, J63, J64, J65, J66 |
7 | ||||
8 | ||||
9 | ||||
10 | ||||
11 | ||||
12 |
Objective | Objective Value | Objective Function |
---|---|---|
Z1 | 175 | = 0.86 |
Z2 | 6 | = 0.55 |
Z3 | 5305.25 | = 0.89 |
Z4 | 1248 | = 0.86 |
Total satisfaction level .55 |
Compared Items | Taha et al. [11] | Kucukkoc and Zhang [1] | Cerqueus and Delorme [12] | Proposed Genetic Algorithm | Proposed Fuzzy Multi-Objective Linear Programming |
---|---|---|---|---|---|
Algorithm | Genetic algorithm | Genetic algorithm | Branch-and-bound search | Genetic algorithm | Exact |
Accuracy | Near optimal | Near optimal | Near optimal | Near optimal | Optimal |
One-sided ALBP | Yes | Yes | Yes | Yes | Yes |
Two-sided ALBP | Yes | Yes | No | No | No |
Multiple objectives | No | No | Yes | Yes | Yes |
Cycle time | Yes | Yes | Yes | Yes | Yes |
Number of workstations | No | Yes | Yes | Yes | Yes |
Workload variance | No | No | No | Yes | Yes |
Idle time | No | No | Yes | Yes | Yes |
Setup time | No | No | No | Yes | Yes |
Fuzzy sets | No | No | No | Yes | Yes |
Solved by common software packages | No | No | No | No | Yes |
Solve binary behavior | Yes | Yes | Yes | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, A.H.I.; Kang, H.-Y.; Chen, C.-L. Multi-Objective Assembly Line Balancing Problem with Setup Times Using Fuzzy Goal Programming and Genetic Algorithm. Symmetry 2021, 13, 333. https://doi.org/10.3390/sym13020333
Lee AHI, Kang H-Y, Chen C-L. Multi-Objective Assembly Line Balancing Problem with Setup Times Using Fuzzy Goal Programming and Genetic Algorithm. Symmetry. 2021; 13(2):333. https://doi.org/10.3390/sym13020333
Chicago/Turabian StyleLee, Amy H. I., He-Yau Kang, and Chong-Lin Chen. 2021. "Multi-Objective Assembly Line Balancing Problem with Setup Times Using Fuzzy Goal Programming and Genetic Algorithm" Symmetry 13, no. 2: 333. https://doi.org/10.3390/sym13020333