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Abstract: Assembly lines are often indispensable in factories, and in order to attain a certain level
of assembly line productivity, multiple goals must be considered at the same time. However, these
multiple goals may conflict with each other, and this is a multi-objective assembly line balancing
problem. This study considers four objectives, namely minimizing the cycle time, minimizing
the number of workstations, minimizing the workload variance, and minimizing the workstation
idle time. Since the objectives conflict with each other, for example, minimizing the cycle time
may increase the number of workstations, the fuzzy multi-objective linear programming model is
used to maximize the satisfaction level. When the problem becomes too complicated, it may not
be solved by the fuzzy multi-objective linear programming model using a mathematical software
package. Therefore, a genetic algorithm model is proposed to solve the problem efficiently. By
studying practical cases of an automobile manufacturer, the results show that the proposed fuzzy
multi-objective linear programming model and the genetic algorithm model can solve small-scale
multi-objective assembly line balancing problems efficiently, and the genetic algorithm model can
obtain good solutions for large-scale problems in a short computational time. Datasets from previous
works are adopted to examine the applicability of the proposed models. The results show that
both the fuzzy multi-objective linear programming model and the genetic algorithm model can
solve the smaller problem cases and that the genetic algorithm model can solve larger problems.
The proposed models can be applied by practitioners in managing a multi-objective assembly line
balancing problem.

Keywords: assembly line balancing problem; multi-objective linear programming; fuzzy; genetic
algorithm; automobile industry

1. Introduction

Assembly lines are usually constructed to manufacture large-volume standardized
homogeneous products. An assembly line contains sequential workstations, which are
connected by a conveyor belt or material handling system, so that semi-finished prod-
ucts can be processed and moved from one workstation to another [1]. The problem of
assigning tasks to workstations to satisfy some constraints is called the assembly line
balancing problem (ALBP) [2]. Some constraints are that the assignment constraint that
each task can be assigned to one station only, the precedence constraint that the sequence
of the tasks must be followed, and the cycle time constraint that the total task times in
a workstation cannot exceed the cycle time [2]. Salveson [3] was the first researcher con-
structing a mathematical model to solve the problem. Since then, many algorithms and
procedures have been developed to solve different types of the problem. The ALBP can be
further categorized into two types: simple assembly line balancing problem (SALBP) and
generalized assembly line balancing problem (GALBP) [4,5]. The SALBP has some major
characteristics, including mass production of one kind of product; synchronous line with
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definite cycle time; known operation times; serial line layout with workstations; and all
equally equipped workstations [6–8]. The SALBP can be further categorized into SALBP-1,
SALBP-2, SALBP-E, SALBP-F, etc. [8]. The SALBP-1 minimizes the number of workstations
while the cycle time, assembly tasks, tasks times, and precedence requirements are given,
and it is often applied in the assembly line design and installation phase [9,10]. The SALBP-
2 minimizes the cycle time when the number of workstations is given, and it is mainly
adopted to optimize the number of items produced and adjust the existing assembly line
without purchasing new machines or expanding facilities [9,10]. The SALBP-E aims to
minimize both the cycle time and the number of workstations so that the workload can
be balanced [8]. The SALBP-F is a problem when both the cycle time and the number of
workstations are given [8]. The GALBP includes all the problems that are not a SALBP,
and some examples are cost functions, equipment selection, mixed-model production,
multimodel line, parallel stations, U-shaped layout, two-sided line layout, and stochastic
task times [8,10].

Many approaches, such as exact modeling, simple heuristics, and metaheuristics,
have been proposed to solve the ALBP in the past. In this study, new approaches are
presented using fuzzy multi-objective linear programming and genetic algorithm. In an
ALBP, more than one objective may be needed to be considered simultaneously, and the
maximin method can be used for the unweighted multiple objectives. Unlike other works
(for example, Kucukkoc and Zhang [1], Taha et al. [11], Cerqueus and Delorme [12]),
setup times of workstations should be considered. This is because setup times are present
in real practice and should not be neglected. Therefore, a fuzzy multi-objective linear
programming model is constructed first to solve the SALBP with small instances. A genetic
algorithm model is developed next to solve large-scale problems. When the problem
becomes too complicated, the fuzzy multi-objective linear programming model can no
longer solve the problem, and the genetic algorithm model can obtain good solutions
efficiently. According to the authors’ best knowledge, this paper is the first to address
unweighted multiple objectives under fuzzy environment as well as consider several
constrained resources and setup times of workstations.

The rest of this paper is organized as follows. Section 2 presents some related works
of the SALBP. Section 3 introduces the research methods, including the assumptions and
notations, the fuzzy multi-objective linear programming model, and the genetic algorithm
model. Section 4 includes four case studies, and each case is solved by both the fuzzy
multi-objective linear programming model and the genetic algorithm model. Section 5 is
the discussions. Section 6 contains the conclusions.

2. Related Works

The SALBP has been researched abundantly. Baybars [6] performed a comprehensive
review of the earlier development of the SALBP and its modifications and generalizations
over time. Deterministic models and exact algorithms for solving the SALBP-1 and the
SALBP-2 were analyzed. Becker and Scholl [8] performed a survey of the developments in
the GALBP research, and they provided a classification for facilitating distinguishing and
referencing the problem types. Solving the ALBP can be categorized into exact methods
and approximate methods. Some recent works of the ALBP using the exact methods are
reviewed as follows. A two-sided ALBP was examined by Özcan and Toklu [2]. A pre-
emptive (lexicographic) mixed integer goal programming model for precise goals was
developed first, with minimizing the number of mated stations as the primary objective
and minimizing the number of stations for a given cycle time as a secondary objective.
A fuzzy mixed integer goal programming model was proposed next for imprecise goals,
and the goals include minimizing the number of mated stations, minimizing the cycle
time, and minimizing the number of tasks assigned per station. Ritt and Costa [13]
aimed to improve the integer programming models for the SALBPs, and they proposed
enhanced formulations for the precedence constraints and for the station limits. The U-
shaped ALBP and the bin-packing problem with precedence constraints were used to
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examine the effectiveness of the proposed models. The approximate methods include
bounded exact methods, simple heuristics, and metaheuristics. A bound exact method
was proposed by Cerqueus and Delorme [12], and two objectives were considered in the
SALBP: minimizing the task time and minimizing the number of stations. The authors
proposed a generic branch-and-bound method, and the results showed that the proposed
method outperformed an ε-constraint method. A type-2 assignment restricted ALBP was
tackled by Pinarbasi et al. [14], and a constraint programming model was developed
to minimize the cycle time for a fixed number of stations. The model was found to be
more outstanding compared to the mixed integer programming model. A multi-objective
straight ALBP in a stochastic environment was examined by Mardani-Fard et al. [15],
and a multi-objective mixed integer linear programming model was formulated. Then, a
novel hybrid goal programming approach by integrating a fuzzy programming approach
goal programming method was developed to solve the problem. Some examples of
simple heuristics are reviewed here. Fathi et al. [5] evaluated 20 heuristics previously
developed in the literature for the SALBP-1 and compared their performances in solving
100 problem instances for the SALBP for both a straight line and a U-shaped line. The
performances of the heuristics, in minimizing the number of workstations, in minimizing
the smoothness index, and in simultaneously considering both objectives, were investigated.
Bakar et al. [16] applied four heuristic methods for solving the ALBP aiming to minimize
the number of workstations and improve the bottleneck problems simultaneously: largest
candidate rule (LCR), ranked positional weight (RPW), shortest processing time (SPT),
and longest processing time (LPT). Based on the results, two models were proposed: a
layout changes model and a task specification changes model. Li et al. [17] developed
a branch, bound, and remember (BBR) algorithm to tackle the two-sided assembly line
balancing problem by minimizing the number of mated stations in two-sided assembly
lines. The algorithm modified the Hoffman heuristic to obtain high-quality upper bounds
and adopted two dominance rules to prune the sub-problems. Li et al. [18] studied a
cost-oriented assembly line balancing problem with collaborative robots. A multi-objective
mixed-integer programming model was developed first to minimize the cycle time and the
total collaborative robot purchasing cost, and a multi-objective migrating bird optimization
algorithm was proposed to obtain a set of high-quality Pareto solutions. Rashid et al. [19]
studied a cost-oriented two-sided assembly line balancing problem (TALBP), in which
assembly equipment, station setup, labor, and power costs are considered. The moth flame
optimization approach was improved by introducing a global reference flame mechanism
in the reproduction process to guide the global search direction so that the problem could
be optimized.

Genetic algorithm has been adopted by scholars to solve the ALBP. Some recent
works are reviewed here. A two-sided ALBP was examined by Kim et al. [20] with the
objective of minimizing the number of workstations. A genetic algorithm approach was
applied, and a genetic encoding and decoding scheme and genetic operators were devised.
The performance of the proposed model was verified by comparing with the first-fit rule
(FFR) heuristic. Noorul Haq et al. [9] studied a mixed-model ALBP and applied a genetic
algorithm approach, which outperformed the modified ranked positional weight method.
A hybrid genetic algorithm approach, which incorporated the genetic algorithm approach
and the modified ranked positional weight method, was constructed, and it had a better
performance than the genetic algorithm approach. The two-sided ALBP was tackled by
Kim et al. [21] by proposing a mixed integer programming model with the objective of
minimizing the cycle time for a fixed number of mated stations. A genetic algorithm
approach was proposed next, and the performance was better compared with a heuristic
and an existing genetic algorithm approach. Taha et al. [11] constructed a genetic algorithm
approach for solving the two-sided ALBP. A new method was proposed for generating the
initial population in different areas of the search space, and it was found to be effective
for solving large-scale problems. The effectiveness of the proposed algorithm was further
evaluated in terms of the side assignment rules, population similarity measure, initial
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population generation method, selection operator, and crossover operators. A parallel
two-sided ALBP, in which two or more two-sided assembly lines are positioned in parallel
to each other, was studied by Kucukkoc and Zhang [1]. A mathematical model was first
formulated to reflect the problem, and a genetic algorithm approach was proposed to
solve the problem. Tanhaie et al. [22] studied a mixed-model ALBP in a make-to-order
environment. A multi-objective model was first proposed to minimize the number of
stations and minimize the cost of task duplication and worker assignments concurrently.
A pull-based control system was next presented to minimize the work in process. A non-
dominated sorting genetic algorithm (NSGA-II) was lastly constructed for large-scale
instances, and the model outperformed four multi-objective algorithms: multi-objective
particle swarm optimization, multi-objective ant colony optimization, multi-objective firefly
algorithm, and multi-objective simulated annealing algorithm. Eslamipoor and Nobari [23]
studied a mixed-model assembly line problem that considered the learning and fatigue
issues of operators. A nonlinear mathematical model was developed to minimize the total
overload and idleness times, and the model was transformed into a linear mathematical
model next. The genetic algorithm approach was applied to solve a complex problem.

3. Research Methods

The proposed model aims to consider multiple objectives given a set of jobs j (j = 1,
. . . ,J), of which the precedence relationships are predetermined and being processed by a
set of workstations k (k = 1,2, . . . , Kmax). The assumptions and notations are as follows.

3.1. Assumptions and Notations

To simplify the complexity of the assembly line problem, the study is restricted with
the following assumptions [6,12,13].

Assumptions

1. The assembly line mass produces one homogeneous product.
2. The production process is given, and the processing jobs are connected with prece-

dence relations.
3. The production process has a serial line layout with Kmax workstations.
4. A setup time sk is required for each workstation.
5. All workstations are equally equipped with machines and workers.
6. No assignment restrictions are present except for the precedence relations.
7. The job processing time is independent of the station at which the job is performed.
8. The processing time of each job is known and deterministic.
9. A job can only be processed in a single workstation at a time.
10. A workstation can only process a single job at a time.
11. A workstation can perform more than one job.
12. A job can be performed in any workstation.
13. The cycle time in a workstation is the sum of the setup time and the processing time.

The notations are defined here.

Notations

Indices:

j, u, v Job (j = 1,2, . . . , J).

k Workstation (k = 1,2, . . . , K).
i Objective (i = 1,2, . . . , I).

Parameters:

tj Processing time of job j.
Ω Set of precedence relations; (u,v)∈Ω if and only if job u is an immediate predecessor

of job v.
TP Total job processing time.
PC Production planning cycle.
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sk Setup time of workstation k.
Kmax Maximum number of workstations.

Decision variables:

CT Cycle time.
NW Number of workstations.
WV Workload variance.
TD Idle time of all workstations.
Xjk A binary variable, equal to 1 if job j is processed in workstation k.
Yk A binary variable, equal to 1 if workstation k is selected for processing.
Tk Completion time of workstation k.
fi(Zi) Objective function, where Zi is the objective.

3.2. Fuzzy Multi-Objective Linear Programming Model

The multi-objective assembly line balancing model is constructed as follows:

Min Z 1 = CT (1)

Min Z 2 = NW (2)

Min Z 3 = WV (3)

Min Z 4 = TD (4)

NW =
K
∑

k=1
Yk (5)

WV = 1
K ∗

K
∑

k=1

(
Tk − TP

K

)2
(6)

TD =
K
∑

k=1
(CT − Tk) (7)

K
∑

k=1
Yk ≤ Kmax (8)

Tk =
J

∑
j=1

tj ∗ Xjk + sk ∗Yk,
k = 1,2, . . . , K (9)

CT = Max(T1, T2, T3, . . . , TK) (10)

Tk ≤ CT ∗Yk, k = 1,2, . . . , K (11)

K
∑

k=1
Xjk = 1, j = 1,2, . . . , J (12)

K
∑

k=1
k ∗ Xvk −

K
∑

k=1
k ∗ Xuk ≥ 0, ∀(u, v) ∈ Ω (13)

Xjk ∈ {0, 1} j = 1,2, . . . , J, k = 1,2, . . . , K (14)

Yk ∈ {0, 1} k = 1,2, . . . , K (15)

where objective function (1) is to minimize the cycle time, CT, objective function (2)
is to minimize the number of workstations, NW, objective function (3) is to minimize
the workload variance, WV, and objective function (4) is to minimize the idle time of all
workstations, TD. Constraint (5) calculates the total number of workstations used, NW,
by summing up all Yk’s. Constraint (6) calculates the workload variance, WV, based on
the difference between the completion time of each workstation, Tk, and the average job
processing time of a workstation (TP/K), and it is equivalent to workload smoothness.
Constraint (7) calculates the total idle time of all workstations, TD, by summing up the
idle time of each workstation, which is calculated by deducting the completion time of a
workstation, Tk, from the cycle time, CT. Constraint (8) guarantees that the total number of

workstations selected for processing,
K
∑

k=1
Yk, must be less than or equal to the maximum
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number of workstations Kmax. That is, the work content of every workstation is at most
the cycle time. Constraint (9) calculates the completion time of workstation k, Tk, by

summing up the processing time of all jobs in the workstation,
J

∑
j=1

tj ∗ Xjk, and the setup

time of the workstation, sk ∗Yk. Constraint (10) lets cycle time, CT, be the maximum value
among the completion times of all workstations, T1, . . . , Tk. Constraint (11) guarantees
that the completion time of workstation k, Tk, must be less than or equal to the cycle time,
CT ∗ Yk. Constraint (12) ensures that a job can only be assigned and processed by one
single workstation. Constraint (13) ensures the sequencing of jobs; that is, a job needs to
be completed before its next job can proceed. Constraint (14) shows that Xjk is a binary
variable, which is equal to 1 if job j is processed in workstation k. Constraint (15) shows
that Yk is a binary variable, which is equal to 1 if workstation k is selected for processing.

In a fuzzy multi-objective linear programming model, linear membership functions
could be treated as fuzzy parameters. Fuzzy objectives for maximization, minimization,
and target are as follows [22,24–26]:

fi(Zi) =


1 if Zi ≥ Zb

i
Zi−Za

i
Zb

i −Za
i

if Za
i ≤ Zi ≤ Zb

i ,

0 if Zi ≤ Za
i

for maximization objective (16)

fi(Zi) =


1 if Zi ≤ Za

i
Zb

i −Zi

Zb
i −Za

i
if Za

i ≤ Zi ≤ Zb
i ,

0 if Zi ≥ Zb
i

for minimization objective (17)

fi(Zi) =



0 if Zi ≤ Za
i

Zi−Za
i

Zr
i−Za

i
if Za

i ≤ Zi ≤ Zr
i ,

1 if Zi = Zr
i

Zb
i −Zi

Zb
i −Zr

i
if Zr

i ≤ Zi ≤ Zb
i ,

0 if Zi ≥ Zb
i

for target objective (18)

where Zb
i , Za

i , and Zr
i are the upper bound, lower bound, and target, respectively, of the

fuzzy objective.
The fuzzy solution for fuzzy multiple objectives is [27]:

fλ(Zi) =

 ∩
f or all i

fi(Zi)

 (19)

where fλ(Zi) and fi(Zi) represent the membership functions of solution and objective
functions, respectively.

The optimal solution (Z*) is [27]:

fλ(Z∗) = Max fλ(Zi) = Max

 min
f or all i

fi(Zi)

. (20)

The multi-objective linear programming model can be transformed by adopting
Equations (21)–(24).

fi(Zi) =
Zb

i − Zi

Zb
i − Za

i
(21)

fi(Zi) =
Zi − Za

i

Zb
i − Za

i
(22)
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fi(Zi) =
Zi − Za

i
Zr

i − Za
i

(23)

fi(Zi) =
Zb

i − Zi

Zb
i − Zr

i
(24)

By adopting satisfaction level λ, a single objective linear programming problem can
be constructed. A compromise solution can be obtained using Equations (25)–(32).

Max λ (25)

subject to

λ ≤
Zb

i − Zi

Zb
i − Za

i
(26)

λ ≤
Zi − Za

i

Zb
i − Za

i
(27)

λ ≤
Zi − Za

i
Zr

i − Za
i

(28)

λ ≤
Zb

i − Zi

Zb
i − Zr

i
(29)

β(Z) ≤ ζ (30)

0 ≤ λ ≤ 1 (31)

Zi ≥ 0 (32)

where λ,Zb
i , Za

i , Zr
i ,β(Z) and ζ represent the membership function, upper bound, lower

bound, target, constraints, and right-hand sides, respectively.

3.3. Genetic Algorithm for Assembly Line Balancing Problem

A genetic algorithm can be used to solve the assembly line balancing problem and
obtain near-optimal solutions in a short computation time frame. In this study, MATLAB is
applied to develop the genetic algorithm model. To prevent a solution being confined in a
local optimum and to advance toward the global optimum, both two-cut-point crossover
and an inversion mutation operator are applied. The steps of the genetic algorithm are as
follows [28–30]:

Step 1. Initial population of chromosomes

With a population size of N, the initial population is obtained randomly, and it consists
of two types of chromosomes, which are determined randomly.

Step 2. Coding scheme

It is assumed that a job can be assigned to one workstation only. The chromosome
can be encoded as a string of J binary digits, with the jth gene having a value of 1 if
an assignment is made to workstation k and a value of 0 otherwise (see Figure 1). The
assignment strategy is:

X11 + X12 + X13 + . . . + X1K = 1

X21 + X22 + X23 + . . . + X2K = 1

. . .
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Xj1 + Xj2 + Xj3 + . . . + XjK = 1

. . .

XJ1 + XJ2 + XJ3 + . . . + XJK = 1
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Step 3. Fitness function evaluation

Define the fitness function for each chromosome as Max λ, where λ is the system
satisfaction level. Max λ is the maximum satisfaction level among all the chromosomes
across the population.

Step 4. Reproduction operation

Reproduction is controlled by mutation and crossover operators with mutation rate
(Pm) and crossover rate (Pc).

Step 5. New population generation

After crossover and mutation operations in a generation, a new population is generated.

Step 6. Termination

The reproduction operation and new population generation are repeated until the
objective function is optimized or when the stop criterion is attained. The algorithm is
terminated when the generation (Gen) reaches Gmax.

The flowchart of the genetic algorithm process in this research is depicted in Figure 2.
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4. Case Studies
4.1. Case Introduction

This study intends to use four objectives to improve the efficiency and benefit of an
assembly line. These four objectives may have conflicts among them and may contain
uncertainty. Therefore, the proposed mathematical model is applied to solve the problem.
A large automobile assembly plant is used as an example for illustration. The basic
information of the four cases is shown in Table 1. The number of jobs, maximum number
of workstations, planned product cycle time, workstation setup time, and total processing
time in each case are different. As the number of jobs increases, the problem becomes more
complicated. The complexity increases for later cases.

Table 1. Parameters for the cases.

Number of Jobs Maximum Number
of Workstations

Workstation
Setup Time

Total Processing
Time

Case 1 10 5 5 min 94 min
Case 2 20 8 6 min 200 min
Case 3 30 10 7 min 360 min
Case 4 66 12 9 min 539 min

4.2. Case 1
4.2.1. Single Objective Linear Programming Model

The precedence relationships and processing times of jobs for Case 1 are shown in
Figure 3. For instance, job J4 can be processed only after jobs J1 and J3 are completed. Job J3
is a direct predecessor of job J4, and job J1 is an indirect predecessor of job J4. Job J7 can
be processed only after jobs J4 and J6 are completed. The total processing time, 94 min, is
the summation of the processing times of all jobs. A single objective linear programming
model based on each of the four objectives is developed using LINGO 10.
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Figure 3. Precedence relationships and processing times of jobs for Case 1.

Under the objective of minimizing cycle time (Z1), the results are shown in Tables 2
and 3. Table 2 shows that to minimize cycle time (Z1), five workstations are required. For
example, for the first workstation, jobs A1 and A2 are processed. The setup time is 5 min,
and the processing time is:

Processing time = 12 + 7 = 19 (min).

Table 2. Workstation results under the objective Z1 for Case 1.

Workstation Processing Time Setup Time Cycle Time Jobs

1 19 5 24 J1, J2
2 18 5 23 J3, J6
3 19 5 24 J5, J8
4 17 5 22 J4, J7
5 21 5 26 J9, J10

Table 3. Objective results under the objective Z1 for Case 1.

Objective Decision Variable Objective Value

Z1 CT 26
Z2 NW 5
Z3 WV 1.76
Z4 TD 11

Table 3 shows the performance under each objective while achieving the objective
of minimizing cycle time (Z1). For minimizing cycle time (Z1), the decision variable is
the cycle time (CT). The cycle time is 26 min, which can be found by summing up the
processing time (21 min) and the setup time (5 min) for workstation 5, which has the longest
cycle time among all workstations. For minimizing the number of workstations (Z2), the
decision variable is the number of workstations (NW), and there are five workstations,
as shown in Table 2. For minimizing workload variance (Z3), the decision variable is the
workload variance (WV), and 1.76 min is calculated. For minimizing workstation idle time
(Z4), the decision variable is the idle time of all workstations (TD), and it is calculated
as follows:

TD = (26 − 24) + (26 − 23) + (26 − 24) + (26 − 22) + (26 − 26) = 11 (min).

Under the objective of minimizing number of workstations (Z2), the results are shown
in Tables 4 and 5. Table 4 shows that to minimize the number of workstations (Z2),
only one workstation is required to process all jobs. Table 5 shows the performance
under each objective while achieving the objective of minimizing number of workstations
(Z2). For minimizing cycle time (Z1), the cycle time (CT) is 99 min, which can be found
in Table 4. For minimizing number of workstations (NW), there is one workstation, as
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shown in Table 2. For minimizing workload variance (Z3), the workload variance (WV) is
1569.16 min. For minimizing workstation idle time (Z4), the idle time of all workstations
(TD) is 396 min (99*4).

Table 4. Workstation results under the objective Z2 for Case 1.

Workstation Processing Time Setup Time Cycle Time Jobs

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0

5 94 5 99 J1, J2, J3, J4, J5, J6,
J7, J8, J9, J10

Table 5. Objective results under the objective Z2 for Case 1.

Objective Decision Variable Objective Value

Z1 CT 99
Z2 NW 1
Z3 WV 1413.76
Z4 TD 396

Under the objective of minimizing workload variance (L3), the results are shown in
Tables 6 and 7. Table 6 shows that to minimize workload variance (L3), five workstations are
required, and the relevant information about each workstation is listed. Table 7 shows the
performance under each objective while achieving the objective of minimizing workload
variance (L3). For minimizing cycle time (L1), the cycle time (CT) is 26 min. For minimizing
number of workstations (L2), the number of workstations (NW) is 5. For minimizing work-
load variance (L3), the workload variance (WV) is 26.36 min. For minimizing workstation
idle time (L4), the idle time of all workstations (TD) is 11 min.

Table 6. Workstation results under the objective Z3 for Case 1.

Workstation Processing Time Setup Time Cycle Time Jobs

1 19 5 24 A1, A2
2 18 5 23 A3, A6
3 18 5 23 A4, A5
4 18 5 23 A7, A8
5 21 5 26 A9, A10

Table 7. Objective results under the objective Z3 for Case 1.

Objective Decision Variable Objective Value

Z1 CT 26
Z2 NW 5
Z3 WV 1.36
Z4 TD 11

Under the objective of minimizing workstation idle time (Z4), the results are shown in
Tables 8 and 9. Table 8 shows that to minimize workstation idle time (Z4), five workstations
are required, and the relevant information about each workstation is listed. Table 9 shows
the performance under each objective while achieving the objective of minimizing workload
variance (Z3). Table 10 shows the upper bound, lower bound, deviation, and average of
the objective value for the four objectives. The data can be extracted from Table 3, Table 5,
Table 7, Table 9. For example, for the first objective, Z1, the decision variable is CT, and
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the cycle times in Table 3, Table 5, Table 7, Table 9 are 26, 99, 26, and 26, respectively. The
highest value is 99, and it is set as the upper bound. The lowest value is 26, and it is set as
the lower bound. The deviation and the average are as follows:

Deviation = 99 − 26 = 73,

Average = (99 + 26)/2= 62.5.

Table 8. Workstation results under the objective Z4 for Case 1.

Workstation Processing Time Setup Time Cycle Time Jobs

1 21 5 26 J1, J3
2 17 5 22 J2, J4
3 16 5 21 J6, J7
4 19 5 24 J5, J8
5 21 5 26 J9, J10

Table 9. Objective results under the objective Z4 for Case 1.

Objective Decision Variable Objective Value

Z1 CT 26
Z2 NW 5
Z3 WV 4.16
Z4 TD 11

Table 10. Bounds for each objective for Case 1.

Decision Variable Upper Bound Lower Bound Deviation Average

CT 99 26 73 62.5
NW 5 1 4 3
WV 1413.76 1.36 1412.4 707.56
TD 396 11 385 203.5

4.2.2. Fuzzy Multi-Objective Linear Programming Model

In order to satisfy the four objectives simultaneously, a fuzzy multi-objective linear
programming model is constructed based on the concept proposed by Zimmermann [24].
The steps are as follows:

Step 1. Use the results obtained from the single objective linear programming models to
set the upper and lower bound for each objective. The fuzzy membership function
for cycle time, number of workstations, workload variance, and workstation idle
time are f1(Z1), f2(Z2), f3(Z3), and f4(Z4), respectively.

Step 2. Transform the fuzzy multi-objective linear programming model into a single ob-
jective linear programming model. The four objectives are transformed into one
single objective:

Max fλ(Zi) = Max

min( f1(Z1), f2(Z2), f3(Z3), f4(Z4)

.

Step 3. Formulate the fuzzy multi-objective linear programming model with satisfaction
level λ, as follows:

Max λ (33)

subject to
λ ≤ (99−CT)/(99− 26) (34)
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λ ≤ (5−NW)/(5− 1) (35)

λ ≤ (1413 .76−WV)/(1413 .76− 1 .36) (36)

λ ≤ (396−TD)/(396− 11) (37)

0 ≤ λ ≤ 1 (38)

NW = (Y1 + Y2 + Y3 + Y4 + Y5) (39)

WV = 1
5 ∗
[(

T1 − TP
5

)2
+
(

T2 − TP
5

)2
+
(

T3 − TP
5

)2
+
(

T4 − TP
5

)2
+
(

T5 − TP
5

)2
]

(40)

TD = (CT − T1) + (CT − T2) + (CT − T3) + (CT − T4) + (CT − T5) (41)

(Y1 + Y2 + Y3 + Y4 + Y5) ≤ 5 (42)

T1 = t1 ∗ X11 + t2 ∗ X21 + t3 ∗ X31 + t4 ∗ X41 + t5 ∗ X51 + t6 ∗ X61 + t7 ∗ X71 + t8 ∗ X81+
t9 ∗ X91 + t10 ∗ X101 + s1 ∗Y1

(43)

T2 = t1 ∗ X12 + t2 ∗ X22 + t3 ∗ X32 + t4 ∗ X42 + t5 ∗ X52 + t6 ∗ X62 + t7 ∗ X72 + t8 ∗ X82+
t9 ∗ X92 + t10 ∗ X102 + s2 ∗Y2

(44)

T3 = t1 ∗ X13 + t2 ∗ X23 + t3 ∗ X33 + t4 ∗ X43 + t5 ∗ X53 + t6 ∗ X63 + t7 ∗ X73 + t8 ∗ X83+
t9 ∗ X93 + t10 ∗ X103 + s3 ∗Y3

(45)

T4 = t1 ∗ X14 + t2 ∗ X24 + t3 ∗ X34 + t4 ∗ X44 + t5 ∗ X54 + t6 ∗ X64 + t7 ∗ X74 + t8 ∗ X84+
t9 ∗ X94 + t10 ∗ X104 + s4 ∗Y4

(46)

T5 = t1 ∗ X15 + t2 ∗ X25 + t3 ∗ X35 + t4 ∗ X45 + t5 ∗ X55 + t6 ∗ X65 + t7 ∗ X75 + t8 ∗ X85+
t9 ∗ X95 + t10 ∗ X105 + s5 ∗Y5

(47)

CT = Max(T1, T2, T3, T4, T5) (48)

T1 ≤ CT ∗Y1 (49)

T2 ≤ CT ∗Y2 (50)

T3 ≤ CT ∗Y3 (51)

T4 ≤ CT ∗Y4 (52)

T5 ≤ CT ∗Y5 (53)

X11 + X12 + X13 + X14 + X15 = 1 (54)

X21 + X22 + X23 + X24 + X25 = 1 (55)

X31 + X32 + X33 + X34 + X35 = 1 (56)

X41 + X42 + X43 + X44 + X45 = 1 (57)

X51 + X52 + X53 + X54 + X55 = 1 (58)

X61 + X62 + X63 + X64 + X65 = 1 (59)

X71 + X72 + X73 + X74 + X75 = 1 (60)

X81 + X82 + X83 + X84 + X85 = 1 (61)

X91 + X92 + X93 + X94 + X95 = 1 (62)

X101 + X102 + X103 + X104 + X105 = 1 (63)

(1 ∗ X21 + 2 ∗ X22 + 3 ∗ X23 + 4 ∗ X24 + 5 ∗ X25)− (1 ∗ X11 + 2 ∗ X12 + 3 ∗ X13 + 4 ∗ X14 + 5 ∗ X15) ≥ 0 (64)

(1 ∗ X31 + 2 ∗ X32 + 3 ∗ X33 + 4 ∗ X34 + 5 ∗ X35)− (1 ∗ X11 + 2 ∗ X12 + 3 ∗ X13 + 4 ∗ X14 + 5 ∗ X15) ≥ 0 (65)

(1 ∗ X41 + 2 ∗ X42 + 3 ∗ X43 + 4 ∗ X44 + 5 ∗ X45)− (1 ∗ X31 + 2 ∗ X32 + 3 ∗ X33 + 4 ∗ X34 + 5 ∗ X35) ≥ 0 (66)
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(1 ∗ X51 + 2 ∗ X52 + 3 ∗ X53 + 4 ∗ X54 + 5 ∗ X55)− (1 ∗ X31 + 2 ∗ X32 + 3 ∗ X33 + 4 ∗ X34 + 5 ∗ X35) ≥ 0 (67)

(1 ∗ X61 + 2 ∗ X62 + 3 ∗ X63 + 4 ∗ X64 + 5 ∗ X65)− (1 ∗ X21 + 2 ∗ X22 + 3 ∗ X23 + 4 ∗ X24 + 5 ∗ X25) ≥ 0 (68)

(1 ∗ X71 + 2 ∗ X72 + 3 ∗ X73 + 4 ∗ X74 + 5 ∗ X75)− (1 ∗ X41 + 2 ∗ X42 + 3 ∗ X43 + 4 ∗ X44 + 5 ∗ X45) ≥ 0 (69)

(1 ∗ X71 + 2 ∗ X72 + 3 ∗ X73 + 4 ∗ X74 + 5 ∗ X75)− (1 ∗ X61 + 2 ∗ X62 + 3 ∗ X63 + 4 ∗ X64 + 5 ∗ X65) ≥ 0 (70)

(1 ∗ X81 + 2 ∗ X82 + 3 ∗ X83 + 4 ∗ X84 + 5 ∗ X85)− (1 ∗ X51 + 2 ∗ X52 + 3 ∗ X53 + 4 ∗ X54 + 5 ∗ X55) ≥ 0 (71)

(1 ∗ X91 + 2 ∗ X92 + 3 ∗ X93 + 4 ∗ X94 + 5 ∗ X95)− (1 ∗ X81 + 2 ∗ X82 + 3 ∗ X83 + 4 ∗ X84 + 5 ∗ X85) ≥ 0 (72)

(1 ∗ X91 + 2 ∗ X92 + 3 ∗ X93 + 4 ∗ X94 + 5 ∗ X95)− (1 ∗ X71 + 2 ∗ X72 + 3 ∗ X73 + 4 ∗ X74 + 5 ∗ X75) ≥ 0 (73)

(1 ∗ X101 + 2 ∗ X102 + 3 ∗ X103 + 4 ∗ X104 + 5 ∗ X105)− (1 ∗ X91 + 2 ∗ X92 + 3 ∗ X93 + 4 ∗ X94 + 5 ∗ X95) ≥ 0 (74)

Xjk ∈ {0, 1} (75)

Yk ∈ {0, 1} (76)

Objective function (33) is to maximize the satisfaction. Constraint (34) is to minimize
the cycle time, CT, where 26 and 99 are the lower bound and upper bound of Z1, respec-
tively. Constraint (35) is to minimize the number of workstations, NW, where 1 and 5 are
the lower bound and upper bound of Z2 respectively. Constraint (36) is to minimize the
workload variance, WV, where 1.36 and 1413.76 are the lower bound and upper bound
of Z3, respectively. Constraint (37) is to minimize the idle time of all workstations, TD,
where 11 and 396 are the lower bound and upper bound of Z4, respectively. Constraint
(38) sets the satisfaction level to be between 0 and 1. Constraint (39) calculates the total
number of workstations used, NW, by summing up all Yk’s, i.e., Y1, Y2, Y3, Y4, and Y5.
Constraint (40) calculates the workload variance, WV, based on the differences between Tk
and (TP/K). Constraint (41) calculates the total idle time of all workstations, TD. Constraint
(42) ensures that the total number of workstations selected for processing must be less than
or equal to the maximum number of workstations, that is, 5. Constraints (43)–(47) calculate
the completion time of workstation 1 to 5, respectively, by summing up the processing
time of all jobs in the specific workstation and the setup time of the specific workstation.
Constraint (48) lets cycle time, CT, be the maximum value among the completion times
of all workstations, T1, . . . , T5. Constraints (49)–(53) ensure that the completion time of
workstation 1 to 5, respectively, must be less than or equal to the cycle time of the worksta-
tion. Constraints (54)–(63) ensure that job A1 to A10, respectively, can only be assigned and
processed by one single workstation. Constraints (64)–(74) ensure the sequencing of two of
the ten jobs. For instance, Constraint (64) ensures that job A1 must be completed before A2
can go into process in a workstation if they are both processed in the same workstation.
Constraint (75) shows that Xjk is a binary variable, which is equal to 1 if job j is processed
in workstation k. Constraint (76) shows that Yk is a binary variable, which is equal to 1 if
workstation k is selected for processing.

The model contains one variable of λ, one variable of CT, one variable of WV, one
variable of TD, one variable of NW, five variables of Tk, five variables of sk, fifty 0-1 variables
of Xjk, and five 0-1 variables of Yk. Furthermore, each of Equations (9) and (11) contains five
equations. Equation (12) contains ten equations, and Equation (13) contains 11 equations.
In this case, the total number of auxiliary variables is 15, the total number of 0-1 variables
is 55, and the total number of equations is 40 (9 + 2K + J + Ω).

The model can be solved using LINGO 10. The total computation time is 38 s. The
results are shown in Tables 11 and 12. Table 11 shows that two workstations are required,
and the relevant information about each workstation is listed. Table 12 shows the objective
values and satisfaction levels. For minimizing cycle time (Z1), the cycle time (CT) is
52 min. For minimizing number of workstations (Z2), the number of workstations (NW) is
2. For minimizing workload variance (Z3), the workload variance (WV) is 530.16 min. For
minimizing workstation idle time (Z4), the idle time of all workstations (TD) is 141 min. The
total satisfaction level λ is 0.63. A Gantt for the solution of Case 1 is depicted in Figure 4.
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Table 11. Workstation results under fuzzy multi-objective linear programming for Case 1.

Workstation Processing Time Setup Time Cycle Time Jobs

1 47 5 52 J1, J2, J3, J5, J8
2
3 47 5 52 J4, J6, J7, J9, J10
4
5

Table 12. Objective results under fuzzy multi-objective linear programming for Case 1.

Objective Objective Value Objective Function

Z1 52 f1(Z1) = 0.64
Z2 2 f1(Z2) = 0.75
Z3 530.16 f1(Z3) = 0.63
Z4 141 f1(Z4) = 0.66

Total satisfaction level λ = 0.63
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Figure 4. Gantt chart for the solution of Case 1.

4.2.3. Genetic Algorithm Model

The genetic algorithm model is developed using the software MATLAB. The parameters
are set arbitrarily based on past research works and the author’s experiences. The size of the
initial population is set as 10. The crossover rate (Pc) is set as 0.99, and this indicates that
around 99% pairs of individuals participate in producing offspring. The mutation rate (Pm)
is set as 0.01, and this indicates that a gene of a newly created solution is mutated with a
probability 0.01. The algorithm is terminated when the 1000th generation is reached. The
best generation occurs at the 78th generation, as displayed in Figure 5. The total computation
time is 11 s. The solutions generated by the fuzzy multi-objective linear programming model
and by the genetic algorithm model are the same, with the total satisfaction level of 0.63.

A design of experiments (DOE) is carried out to examine the genetic algorithm model,
and four factors are used: population size (N), crossover rate (Pc), mutation rate (Pm), and
maximum generation (Gmax). Table 13 lists the parameters applied to generate the outcomes.
With two levels for each factor, a 16 (24) factorial experiment is executed. Since a run has
three replicates, 48 trials are performed. The computation time, number of generations, and
fitness value of the three trials in a run are applied. Table 14 lists the 16 combinations of the
parameters for Case 1. Since the computation time is dependent on maximum generation
(Gmax) and population size (N), as Gmax or N increases, the computation time increases. In
addition, the number of generations is relatively larger when the population size (N) is
smaller. The fitness values in all the 16 runs are the same, i.e., 0.63. This means that the
fitness values in all the 16 runs remain stable and consistent. Since the value is the same
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as that from the fuzzy multi-objective linear programming model with a total satisfaction
level λ of 0.63, the optimal solution is obtained.

Symmetry 2021, 13, x FOR PEER REVIEW 16 of 28 
 

 

Figure 4. Gantt chart for the solution of Case 1. 

4.2.3. Genetic Algorithm Model 

The genetic algorithm model is developed using the software MATLAB. The param-

eters are set arbitrarily based on past research works and the author’s experiences. The 

size of the initial population is set as 10. The crossover rate (Pc) is set as 0.99, and this 

indicates that around 99% pairs of individuals participate in producing offspring. The 

mutation rate (Pm) is set as 0.01, and this indicates that a gene of a newly created solution 

is mutated with a probability 0.01. The algorithm is terminated when the 1000th genera-

tion is reached. The best generation occurs at the 78th generation, as displayed in Figure 

5. The total computation time is 11 s. The solutions generated by the fuzzy multi-objective 

linear programming model and by the genetic algorithm model are the same, with the 

total satisfaction level of 0.63.  

 

Figure 5. The convergence of the genetic algorithm approach for Case 1. 

A design of experiments (DOE) is carried out to examine the genetic algorithm 

model, and four factors are used: population size (N), crossover rate (Pc), mutation rate 

(Pm), and maximum generation (Gmax). Table 13 lists the parameters applied to generate 

the outcomes. With two levels for each factor, a 16 (24) factorial experiment is executed. 

Since a run has three replicates, 48 trials are performed. The computation time, number of 

generations, and fitness value of the three trials in a run are applied. Table 14 lists the 16 

combinations of the parameters for Case 1. Since the computation time is dependent on 

maximum generation (Gmax) and population size (N), as Gmax or N increases, the computa-

tion time increases. In addition, the number of generations is relatively larger when the 

population size (N) is smaller. The fitness values in all the 16 runs are the same, i.e., 0.63. 

This means that the fitness values in all the 16 runs remain stable and consistent. Since the 

value is the same as that from the fuzzy multi-objective linear programming model with 

a total satisfaction level λ of 0.63, the optimal solution is obtained. 

Table 13. The parameters of the genetic algorithm. 

N Pc Pm Gmax 

10 0.9 0.01 1000 

50 0.99 0.05 2000 

  

Figure 5. The convergence of the genetic algorithm approach for Case 1.

Table 13. The parameters of the genetic algorithm.

N Pc Pm Gmax

10 0.9 0.01 1000
50 0.99 0.05 2000

Table 14. The 16 combinations of the parameters for Case 1.

Run N Pc Pm Gmax Computation Time Number of
Generations Fitness Value

1 10 0.9 0.01 1000 11 79 0.63
2 10 0.9 0.01 2000 19 61 0.63
3 10 0.9 0.05 1000 11 57 0.63
4 10 0.9 0.05 2000 19 68 0.63
5 10 0.99 0.01 1000 11 77 0.63
6 10 0.99 0.01 2000 19 85 0.63
7 10 0.99 0.05 1000 11 167 0.63
8 10 0.99 0.05 2000 19 132 0.63
9 50 0.9 0.01 1000 39 92 0.63

10 50 0.9 0.01 2000 74 65 0.63
11 50 0.9 0.05 1000 38 93 0.63
12 50 0.9 0.05 2000 73 91 0.63
13 50 0.99 0.01 1000 38 85 0.63
14 50 0.99 0.01 2000 74 67 0.63
15 50 0.99 0.05 1000 39 55 0.63
16 50 0.99 0.05 2000 75 48 0.63

4.3. Case 2

The precedence relationships and processing times of jobs for Case 2 are shown
in Figure 6. A single objective linear programming model based on each of the four
objectives is developed using LINGO 10, and Table 15 shows the upper bound, lower
bound, deviation, and average of the objective value for the four objectives.
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Figure 6. Precedence relationships and processing times of jobs for Case 2.

Table 15. Bounds for each objective for Case 2.

Decision Variable Upper Bound Lower Bound Deviation Average

CT 206 32 174 119
NW 8 1 7 4.5
WV 4642 8.75 4633.25 2325.375
TD 1400 8 1392 704

The fuzzy multi-objective linear programming model with satisfaction level λ is
constructed and solved using LINGO 10. The total computation time is 342 s. The results
are shown in Tables 16 and 17. Table 16 shows that three workstations are required, and the
relevant information about each workstation is listed. Table 17 shows the objective values
and satisfaction levels. For minimizing cycle time (L1), the cycle time (CT) is 75 min. For
minimizing the number of workstations (L2), the number of workstations (NW) is 3. For
minimizing the workload variance (L3), the workload variance (WV) is 1042.75 min. For
minimizing the workstation idle time (L4), the idle time of all workstations (TD) is 352 min.
The total satisfaction level λ is 0.71. A Gantt for the solution of Case 2 is shown in Figure 7.

Table 16. Workstation results under fuzzy multi-objective linear programming for Case 2.

Workstation Processing Time Setup Time Cycle Time Jobs

1
2
3

4 66 6 72 A1, A2, A3, A4,
A5, A7

5

6 65 6 71 A6, B1, B2, B3,
B4, B5, B7

7 69 6 75 A8, A9, A10, B6,
B8, B9, B10

8

Table 17. Objective results under fuzzy multi-objective linear programming for Case 2.

Objective Objective Value Objective Function

Z1 75 f1(Z1) = 0.75
Z2 3 f1(Z2) = 0.71
Z3 1042.75 f1(Z3) = 0.78
Z4 352 f1(Z4) = 0.75

Total satisfaction level λ = 0.71
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Figure 7. Gantt chart for the solution of Case 2.

Under the genetic algorithm approach, the total computation time is 16 s. The best
generation occurs at the 379th generation. The solutions generated by the fuzzy multi-
objective linear programming model and by the genetic algorithm model are the same,
with the total satisfaction level of 0.71.

4.4. Case 3

The precedence relationships and processing times of jobs for Case 3 are shown in
Figure 8. A single objective linear programming model based on each of the four objectives
is constructed, and Table 18 shows the upper bound, lower bound, deviation, and average
of the objective value for the four objectives.
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Table 18. Bounds for each objective for Case 3.

Decision Variable Upper Bound Lower Bound Deviation Average

CT 367 43 323 205
NW 10 1 9 5.5
WV 11664 0.7 11663.3 5832.35
TD 3240 1.8 3238.2 1620.9

The fuzzy multi-objective linear programming model with satisfaction level λ is
developed. The model is solved using LINGO 10, and the computation time is 432 s. The
results of the model are shown in Tables 19 and 20. Table 19 shows that three workstations
are required, and the relevant information about each workstation is listed. Table 20 shows
the objective values and satisfaction levels. For minimizing the cycle time (L1), the cycle
time (CT) is 127 min. For minimizing the number of workstations (L2), the number of
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workstations (NW) is 3. For minimizing the workload variance (L3), the workload variance
(WV) is 3024 min. For minimizing the workstation idle time (L4), the idle time of all
workstations (TD) is 840 min. The total satisfaction level λ is 0.74.

Table 19. Workstation results under fuzzy multi-objective linear programming for Case 3.

Workstation Processing Time Setup Time Cycle Time Jobs

1 120 7 127 J1, J2, J4, J6, J7, J16, J18, J20, J21, J23, J26
2
3 120 7 127 J3, J5, J17, J19, J24, J25, J27, J28
4
5
6
7
8 120 7 127 J8, J9, J10, J11, J12, J13, J14, J15, J22, J29, J30
9
10

Table 20. Objective results under fuzzy multi-objective linear programming for Case 3.

Objective Objective Value Objective Function

Z1 127 f1(Z1) = 0.74
Z2 3 f1(Z2) = 0.78
Z3 3024 f1(Z3) = 0.74
Z4 840 f1(Z4) = 0.74

Total satisfaction level λ = 0.74

Under the genetic algorithm approach, the total computation time is 19 s. The best
generation occurs at the 718th generation. The solutions generated by the fuzzy multi-
objective linear programming model and by the genetic algorithm model are the same,
with the total satisfaction level of 0.74.

The calculation time under the fuzzy multi-objective linear programming model is
longer than that under the genetic algorithm model. As the complexity of the problem in-
creases, the time required by the fuzzy multi-objective linear programming model increases
much more compared with the genetic algorithm model.

4.5. Case 4

In Case 4, there are 66 jobs, the maximum number of workstations is 12, the planned
product cycle time is 1800 min, the workstation setup time is 9 min, and the total processing
time is 539 min. The precedence relationships and processing times of jobs for Case 4 are
shown in Figure 9. Table 21 shows the upper bound, lower bound, deviation, and average of
the objective value for each objective under the single objective linear programming model.

The fuzzy multi-objective linear programming model with satisfaction level λ is
developed, and the model is solved using LINGO 10. However, the problem is NP-hard,
and it can no longer be solved.

Then, the problem is solved by the genetic algorithm approach. Since the best gen-
eration occurs at the 718th generation in Case 3 and the problem becomes much more
complicated in Case 4, the algorithm is set to terminate after 2000 generations have elapsed
in Case 4. The total computation time is 34 s, and the best generation occurs at the
1156th generation. The solutions generated by the genetic algorithm model are shown
in Tables 22 and 23. Table 22 shows that six workstations are required, and the relevant
information about each workstation is listed. Table 23 also shows the objective values
and satisfaction levels. For minimizing the cycle time (L1), the cycle time (CT) is 175 min.
For minimizing the number of workstations (L2), the number of workstations (NW) is six.
For minimizing workload variance (L3), the workload variance (WV) is 5305.25 min. For
minimizing workstation idle time (L4), the idle time of all workstations (TD) is 1248 min.
The total satisfaction level λ is 0.55.



Symmetry 2021, 13, 333 20 of 26

Symmetry 2021, 13, x FOR PEER REVIEW 20 of 28 
 

 

Table 20. Objective results under fuzzy multi-objective linear programming for Case 3. 

Objective  Objective Value Objective Function 

Z1 127 1 1( )f Z = 0.74 

Z2 3 1 2( )f Z = 0.78 

Z3 3024 1 3( )f Z = 0.74 

Z4 840 1 4( )f Z = 0.74 

Total satisfaction level λ = 0.74 

The calculation time under the fuzzy multi-objective linear programming model is 

longer than that under the genetic algorithm model. As the complexity of the problem 

increases, the time required by the fuzzy multi-objective linear programming model in-

creases much more compared with the genetic algorithm model.  

4.5. Case 4 

In Case 4, there are 66 jobs, the maximum number of workstations is 12, the planned 

product cycle time is 1800 min, the workstation setup time is 9 min, and the total pro-

cessing time is 539 min. The precedence relationships and processing times of jobs for 

Case 4 are shown in Figure 9. Table 21 shows the upper bound, lower bound, deviation, 

and average of the objective value for each objective under the single objective linear pro-

gramming model. 

Table 21. Bounds for each objective for Case 4. 

Decision Variable Upper Bound Lower Bound Deviation Average 

CT 807 75 732 441 

NW 12 1 11 6.5 

WV 49,749 7 49,742 24,878 

TD 8877 12 8865 4444.5 

 

Figure 9. Precedence relationships and processing times of jobs for Case 4. 

J15

J9

J10

J11

J8

J7

J6

J5

J4

J3

J2

J1 J14

J13

J12

J21

J20

J19

J18

J17

J16

J22

J23

J24

J26

J25

J27

J28

J29

J30

J31

J32

J33

J34

J35

J36

J37

J38

J39

J40

J41

J42

J44

J43

J45

12

16
18

10

19

4

14

13

5

15

11

8

9

10

17

15

18

14

9

15

13

10

16

11

8

10

7

12

14

7

14

8

10

14

8

15

10

17

11

13

4

18

10

12

15

J51

J50

J49

J48

J47

J46

J52

J53

J54

J56

J55

J57

J58

J59

J60

16

10

19

4

13

5

14

13

8

9

10

17

15

16

14

J61

J63

J62

J64

J65

J66

17

10

19

14

13

512

Figure 9. Precedence relationships and processing times of jobs for Case 4.

Table 21. Bounds for each objective for Case 4.

Decision
Variable Upper Bound Lower Bound Deviation Average

CT 807 75 732 441
NW 12 1 11 6.5
WV 49,749 7 49,742 24,878
TD 8877 12 8865 4444.5

Table 22. Workstation results under the genetic algorithm model for Case 4.

Workstation Processing
Time

Setup
Time

Cycle
Time Jobs

1 100 9 109 J1, J2, J3, J4, J5, J6, J7, J8, J9, J21
2 140 9 149 J46, J47, J48, J49, J50, J51, J52, J53, J54, J55, J56, J57
3 152 9 161 J11, J12, J31, J32, J33, J34, J35, J36, J37, J38, J40, J41
4 121 9 130 J10, J16, J17, J18, J19, J20, J22, J24, J25
5 166 9 175 J13, J14, J15, J23, J26, J27, J28, J29, J30, J39, J42, J43, J44, J45
6 119 9 128 J58, J59, J60, J61, J62, J63, J64, J65, J66
7
8
9

10
11
12

Table 23. Objective results under the genetic algorithm model for Case 4.

Objective Objective Value Objective Function

Z1 175 f1(Z1) = 0.86
Z2 6 f1(Z2) = 0.55
Z3 5305.25 f1(Z3) = 0.89
Z4 1248 f1(Z4) = 0.86

Total satisfaction level λ = 0.55
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The calculation under the fuzzy multi-objective linear programming model is no
longer probable as the complexity of the problem increases. Although the model cannot
be solved by the fuzzy multi-objective linear programming model optimally, the genetic
algorithm model can obtain a good solution efficiently.

Five more cases that adopt the dataset of past works are presented in the Appendix A.

5. Discussion

In this study, the satisfaction level λ of the system is the objective function, which is
to be maximized. This research considers the ALBP of the automobile manufacturer in a
fuzzy environment; several constrained resources are considered as well as the setup times
of workstations. The maximin method for the unweighted multiple objectives is adopted.
Nine cases are used to examine the proposed fuzzy multi-objective linear programming
model and the genetic algorithm model. Since the scales are relatively small for five cases,
the fuzzy multi-objective linear programming model can generate optimal solutions, and
the genetic algorithm model can also obtain optimal solutions efficiently. The computation
time required by the genetic algorithm model under each of the five cases is lower than
that required by the fuzzy multi-objective linear programming model. For the other four
cases, since the problem scales are larger, the fuzzy multi-objective linear programming
model can no longer solve the problem. The genetic algorithm model can still obtain
good solutions under a very short computation time. To summarize, the proposed fuzzy
multi-objective linear programming model can obtain optimal solutions when the scale of
the ALBP is small, and the proposed genetic algorithm model can generate good solutions
for large-scale problems efficiently.

The two models proposed in this study are compared with the models developed
by Taha et al. [11], Kucukkoc and Zhang [1], and Cerqueus and Delorme [12]. Table 24
shows that among the compared items, the proposed genetic algorithm performed well
for nine items, and the proposed fuzzy multi-objective linear programming performed
well for 11 items. Thus, the two models are outstanding overall compared to other related
models. Since the proposed genetic algorithm model can generate near-optimal solutions
within a short computation time, it is suggested to be applied to solve large-scale problems.
Even though the proposed models can only solve a one-sided ALBP, they can be tailored to
solve a two-sided ALBP, a U-shaped ALBP, or a mixed-model ALBP. This can be our future
research direction.

Table 24. Comparisons among related works.

Compared Items Taha et al. [11] Kucukkoc and
Zhang [1]

Cerqueus and
Delorme [12]

Proposed Genetic
Algorithm

Proposed Fuzzy
Multi-Objective

Linear Programming

Algorithm Genetic
algorithm

Genetic
algorithm

Branch-and-bound
search Genetic algorithm Exact

Accuracy Near optimal Near optimal Near optimal Near optimal Optimal
One-sided ALBP Yes Yes Yes Yes Yes
Two-sided ALBP Yes Yes No No No

Multiple objectives No No Yes Yes Yes
Cycle time Yes Yes Yes Yes Yes
Number of

workstations No Yes Yes Yes Yes

Workload variance No No No Yes Yes
Idle time No No Yes Yes Yes

Setup time No No No Yes Yes
Fuzzy sets No No No Yes Yes

Solved by common
software packages No No No No Yes

Solve binary
behavior Yes Yes Yes Yes Yes
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6. Conclusions

In this research, a multi-objective assembly line balancing problem with fuzzy sets
and setup time is tackled. A fuzzy multi-objective linear programming model with four
objectives, minimizing the cycle time, minimizing the number of workstations, minimizing
the workload variance, and minimizing workstation idle time, is constructed first. A genetic
algorithm model with a coding scheme for the problem is proposed next. Four case studies
are present to examine the two models. The results show that both models can generate
optimal solutions when the scale of a problem is not too big. However, when the problem
becomes too complicated, the fuzzy multi-objective linear programming model can no
longer solve the problem. On the other hand, the genetic algorithm model can obtain
near-optimal solutions in a short period of computational time.

There was no work, to the authors’ understanding, that tackled the simple assembly
line balancing problems (SALBP) with the consideration of setup time, multiple objectives,
and fuzzy sets concurrently. The developed models can reflect a more practical problem in
today’s manufacturing environment, for example, when the management wants to consider
different performance objectives, or when machine setups are necessary. Companies
can enhance customer satisfaction and decrease total cost by applying the models. The
outcomes of this research can present important supply chain management information for
companies in practice.

For future studies, the initial population of the genetic algorithm could be generated
effectively to ensure diversity, for example, by proposing a new approach or adopting
the methodology proposed by Taha [11]. In addition, more objectives may be taken into
consideration, and different important weights should be given to these objectives. With
the fast evolution of technology and manufacturing environment, many new assembly line
balancing problems emerge. Novel methodologies and models should be created to solve
the problems and help manufacturers achieve a better performance. New metaheuristics
methods may be applied or proposed to solve the problems, and a comparison of the
methods can be performed.
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Appendix A

The dataset for the benchmarks with 11, 25, 35, 37, and 54 jobs are named cases 5, 6 7, 8,
and 9, respectively. The parameters for the five cases are presented in Table A1, and the data
for the cases are shown in Tables A2–A6. Note that some of the data, such as setup time
and the maximum number of workstations, must be made up by the authors because the
sample problems do not consider these factors. Tables A7–A11 show the objective values
and satisfaction levels for Cases 5 to 9, respectively. Tables A7 and A8 can be obtained by
both the fuzzy multi-objective linear programming model and the genetic algorithm model.
However, Tables A9–A11 can only be obtained by the genetic algorithm model.
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Table A1. Parameters for Cases 5–9.

Sample Problem Number
of Jobs

Maximum
Number of

Workstations

Workstation
Setup Time

Total Processing
Time

Case 5 Jackson [31] 11 6 5 min 46 min

Case 6 Rosenberg and
Ziegler [32] 25 8 6 min 125 min

Case 7 Gunther et al. [33] 35 10 7 min 484 min
Case 8 Pinarbasi et al. [14] 37 10 7 min 908 min
Case 9 Rashid et al. [19] 54 11 9 min 2864 min

Table A2. Data for Case 5.

Job Predecessor Processing Time Job Predecessor Processing Time

1 - 6 7 3, 4, 5 3
2 1 2 8 6 6
3 1 5 9 7 5
4 1 7 10 8 5
5 1 1 11 9, 10 4
6 2 2

Table A3. Data for Case 6.

Job Predecessor Processing Time Job Predecessor Processing Time

1 - 4 14 13 3
2 - 3 15 12 5
3 1, 2 9 16 14 3
4 3 5 17 15 13
5 4 9 18 16, 17 5
6 5 4 19 14 2
7 6 8 20 14 3
8 4 7 21 20 7
9 8 5 22 19, 21 5
10 6, 9 1 23 17 3
11 7, 8 3 24 21 8
12 7 1 25 18, 20, 23 4
13 9, 11 5

Table A4. Data for Case 7.

Job Predecessor Processing Time Job Predecessor Processing Time

1 - 29 19 18 19
2 1 3 20 17 29
3 2 5 21 16, 20 8
4 3 22 22 21 10
5 1 5 23 22 16
6 5 14 24 23 23
7 1, 6 2 25 21 5
8 6 5 26 25 5
9 8 22 27 24, 26 5

10 1 30 28 11, 13, 27 40
11 4 23 29 28 2
12 1 30 30 21 5
13 9 23 31 30 5
14 7 2 32 21, 31 1
15 14 19 33 11, 13, 27, 32 40
16 15 29 34 27 2
17 - 2 35 33 2
18 7, 12 2
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Table A5. Data for Case 8.

Job Predecessor Processing Time Job Predecessor Processing Time

1 - 23 20 19 13
2 - 12 21 16 14
3 1, 2 35 22 17 14
4 - 12 23 - 12
5 1, 4 35 24 22, 23 38
6 3, 5, 8, 10 7 25 21 38
7 - 12 26 - 10
8 1, 7 35 27 26 18
9 - 12 28 24, 25, 27 22
10 1, 9 35 29 28 15
11 6 22 30 28 19
12 6 16 31 17, 18 38
13 6 54 32 31 43
14 12, 13 36 33 32 10

15 6 26 34 11, 14, 15, 20,
29, 30, 33 5

16 6 42 35 34 20
17 6 42 36 35 16
18 6 26 37 36 55
19 6 26

Table A6. Data for Case 9.

Job Predecessor Processing Time Job Predecessor Processing Time

1 - 159 28 26, 27 23
2 1 16 29 - 24
3 1 29 30 29 46
4 1 16 31 29 16
5 1 13 32 29 19
6 1 20 33 29 75
7 1 23 34 30, 31, 32, 33 18

8 1 122 35 3, 4, 5, 6, 10,
19 45

9 2, 7 112 36 28, 34 151
10 9 154 37 36 21
11 - 90 38 35, 36 41
12 11 57 39 36 42
13 12 12 40 35, 36 40
14 12 15 41 36 18
15 8, 13, 14 142 42 35, 36 15

16 15 87 43 37, 38, 39, 40,
41, 42 41

17 15 59 44 40/41 33
18 15 23 45 42 38
19 8 23 46 37, 38 36
20 16, 17, 18 25 47 37, 38 53
21 20 49 48 - 125
22 20 24 49 34, 39 92
23 20 27 50 34, 39 57
24 20 21 51 34, 39 71
25 - 33 52 34, 39 44
26 25 61 53 - 50

27 25 76 54 43, 44, 45, 46,
47, 48, 49, 53 142
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Table A7. Objective results for Case 5.

Objective Objective Value Objective Function

Z1 23 f1(Z1) = 0.72
Z2 2 f1(Z2) = 0.80
Z3 117.56 f1(Z3) = 0.64
Z4 92 f1(Z4) = 0.68

Total satisfaction level λ = 0.64

Table A8. Objective results for Case 6.

Objective Objective Value Objective Function

Z1 30 f1(Z1) = 0.55
Z2 5 f1(Z2) = 0.50
Z3 114.14 f1(Z3) = 0.55
Z4 55 f1(Z4) = 0.55

Total satisfaction level λ = 0.50

Table A9. Objective results for Case 7.

Objective Objective Value Objective Function

Z1 162 f1(Z1) = 0.74
Z2 3 f1(Z2) = 0.77
Z3 5466 f1(Z3) = 0.74
Z4 1136 f1(Z4) = 0.74

Total satisfaction level λ = 0.74

Table A10. Objective results for Case 8.

Objective Objective Value Objective Function

Z1 304 f1(Z1) = 0.72
Z2 3 f1(Z2) = 0.78
Z3 19238.56 f1(Z3) = 0.74
Z4 2132 f1(Z4) = 0.74

Total satisfaction level λ = 0.72

Table A11. Objective results for Case 9.

Objective Objective Value Objective Function

Z1 955 f1(Z1) = 0.71
Z2 3 f1(Z2) = 0.80
Z3 180771.3 f1(Z3) = 0.74
Z4 7641 f1(Z4) = 0.76

Total satisfaction level λ = 0.71
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