Recurrent Multi-Fiber Network for 3D MRI Brain Tumor Segmentation
Abstract
:1. Introduction
2. Related Work
3. Method
3.1. Recurrent Multi-Fiber (RMF) Unit
3.2. MF Unit
3.3. Multiplexer Unit
4. Experiments
4.1. Benchmark Dataset and Evaluation Criteria
4.2. Implementation and Training
4.3. Results
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bakas, S.; Reyes, M.; Jakab, A.; Bauer, S.; Rempfler, M.; Crimi, A.; Shinohara, R.T.; Berger, C.; Ha, S.M.; Rozycki, M.; et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv 2018, arXiv:1811.02629. [Google Scholar]
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 2014, 34, 1993–2024. [Google Scholar] [CrossRef]
- Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, J.S.; Freymann, J.B.; Farahani, K.; Davatzikos, C. Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. Sci. Data 2017, 4, 170117. [Google Scholar] [CrossRef] [Green Version]
- Zeineldin, R.A.; Karar, M.E.; Coburger, J.; Wirtz, C.R.; Burgert, O. Deepseg: Deep neural network framework for automatic brain tumor segmentation using magnetic resonance flair images. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 909–920. [Google Scholar] [CrossRef]
- Luo, X.; Chen, Z. English text quality analysis based on recurrent neural network and semantic segmentation. Future Gener. Comput. Syst. 2020, 112, 507–511. [Google Scholar] [CrossRef]
- Yuan, W.; Wei, J.; Wang, J.; Ma, Q.; Tasdizen, T. Unified generative adversarial networks for multimodal segmentation from unpaired 3D medical images. Med. Image Anal. 2020, 64, 101731. [Google Scholar] [CrossRef]
- Shuang, Y.; Wang, Z. A novel approach for automatic and robust segmentation of the 3D liver in computed tomography images. Meas. Sci. Technol. 2020, 31, 115701. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.M.; Larochelle, H. Brain tumor segmentation with deep neural networks. Med. Image Anal. 2017, 35, 18–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; Volume 2016, pp. 770–778. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Lecture Notes in Computer Science, Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Xu, F.; Ma, H.; Sun, J.; Wu, R.; Liu, X.; Kong, Y. Lstm multi-modal unet for brain tumor segmentation. In Proceedings of the 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), Xiamen, China, 5–7 July 2019; pp. 236–240. [Google Scholar]
- Akilan, T.; Wu, Q.J.; Safaei, A.; Huo, J.; Yang, Y. A 3D cnn-lstm-based image-to-image foreground segmentation. IEEE Trans. Intell. Transp. Syst. 2019, 21, 959–971. [Google Scholar] [CrossRef]
- Dong, S.; Luo, G.; Tam, C.; Wang, W.; Wang, K.; Cao, S.; Chen, B.; Zhang, H.; Li, S. Deep atlas network for efficient 3D left ventricle segmentation on echocardiography. Med. Image Anal. 2020, 61, 101638. [Google Scholar] [CrossRef]
- Heinrich, M.P.; Oktay, O.; Bouteldja, N. Obelisk-net: Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions. Med. Image Anal. 2019, 54, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, G.; Fidon, L.; Ourselin, S.; Cardoso, M.J.; Vercauteren, T. On the compactness, efficiency, and representation of 3D convolutional networks: Brain parcellation as a pretext task. In Lecture Notes in Computer Science, Proceedings of the International Conference on Information Processing in Medical Imaging, Boone, NC, USA, 25–30 June 2017; Springer: Cham, Switzerland, 2017; Volume 10265, pp. 348–360. [Google Scholar]
- Li, T.; Wei, B.; Cong, J.; Li, X.; Li, S. S 3 eganet: 3D spinal structures segmentation via adversarial nets. IEEE Access 2019, 8, 1892–1901. [Google Scholar] [CrossRef]
- Liu, P.; Dou, Q.; Wang, Q.; Heng, P.-A. An encoder-decoder neural network with 3D squeeze-and-excitation and deep supervision for brain tumor segmentation. IEEE Access 2020, 8, 34029–34037. [Google Scholar] [CrossRef]
- Kamnitsas, K.; Bai, W.; Ferrante, E.; McDonagh, S.; Sinclair, M.; Pawlowski, N.; Rajchl, M.; Lee, M.; Kainz, B.; Rueckert, D.; et al. Ensembles of multiple models and architectures for robust brain tumour segmentation. In Lecture Notes in Computer Science, Proceedings of the International MICCAI Brainlesion Workshop, Quebec City, QC, Canada, 14 September 2017; Springer: Cham, Switzerland, 2017; pp. 450–462. [Google Scholar]
- Kamnitsas, K.; Ledig, C.; Newcombe, V.F.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient multi-scale 3D cnn with fully connected crf for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61–78. [Google Scholar] [CrossRef]
- Myronenko, A. 3D mri brain tumor segmentation using autoencoder regularization. In Lecture Notes in Computer Science, Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, 16 September 2018; Springer: Cham, Switzerland, 2018; pp. 311–320. [Google Scholar]
- Zhou, C.; Chen, S.; Ding, C.; Tao, D. Learning contextual and attentive information for brain tumor segmentation. In Lecture Notes in Computer Science, Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, 16 September 2018; Springer: Cham, Switzerland, 2018; pp. 497–507. [Google Scholar]
- Ke, Q.; Zhang, J.; Wei, W.; Damasevicius, R.; Wozniak, M. Adaptive independent subspace analysis (aisa) of brain magnetic resonance imaging (mri) data. IEEE Access 2019, 7, 12252–12261. [Google Scholar] [CrossRef]
- Khan, M.A.; Ashraf, I.; Alhaisoni, M.; Damaeviius, R.; Scherer, R.; Rehman, A.; Bukhari, S.A.C. Multimodal brain tumor classification using deep learning and robust feature selection: A machine learning application for radiologists. Diagnostics 2020, 10, 565. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Chen, C.; Liu, X.; Ding, M.; Zheng, J.; Li, J. 3D dilated multi-fiber network for real-time brain tumor segmentation in mri. In Lecture Notes in Computer Science, Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, 13–17 October 2019; Springer: Cham, Switzerland, 2019; Volume 11766, pp. 184–192. [Google Scholar]
- Chen, Y.; Kalantidis, Y.; Li, J.; Yan, S.; Feng, J. Multi-Fiber Networks for Video Recognition; Springer International Publishing: Cham, Switzerland, 2018; Volume 11205, pp. 364–380. [Google Scholar]
- Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, J.; Freymann, J.; Farahani, K.; Davatzikos, C. Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. 2017. [Google Scholar] [CrossRef]
- Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, J.; Freymann, J.; Farahani, K.; Davatzikos, C. Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. 2017, 286. [Google Scholar] [CrossRef]
- Sharif, M.I.; Li, J.P.; Khan, M.A.; Saleem, M.A. Active deep neural network features selection for segmentation and recognition of brain tumors using mri images. Pattern Recognit. Lett. 2020, 129, 181–189. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation; Springer International Publishing: Cham, Switzerland, 2016; Volume 9901, pp. 424–432. [Google Scholar]
- Nuechterlein, N.; Mehta, S. 3D-ESPNet with Pyramidal Refinement for Volumetric Brain Tumor Image Segmentation; Springer International Publishing: Cham, Switzerland, 2019; Volume 11384, pp. 245–253. [Google Scholar]
- Cheng, J.; Liu, J.; Liu, L.; Pan, Y.; Wang, J. Multi-level glioma segmentation using 3D u-net combined attention mechanism with atrous convolution. In Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21 November 2019; pp. 1031–1036. [Google Scholar]
- Fang, L.; He, H. Three pathways u-net for brain tumor segmentation. In Proceedings of the 7th Medical Image Computing and Computer-Assisted Interventions (MICCAI) BraTS Challenge, Granada, Spain, 16–20 September 2018; Volume 2018, pp. 119–126. [Google Scholar]
- Gates, E.; Pauloski, J.G.; Schellingerhout, D.; Fuentes, D. Glioma Segmentation and a Simple Accurate Model for Overall Survival Prediction; Springer International Publishing: Cham, Switzerland, 2019; Volume 11384, pp. 476–484. [Google Scholar]
- Hu, X.; Li, H.; Zhao, Y.; Dong, C.; Menze, B.H.; Piraud, M. Hierarchical Multi-Class Segmentation of Glioma Images Using Networks with Multi-Level Activation Function; Springer International Publishing: Cham, Switzerland, 2019; Volume 11384, pp. 116–127. [Google Scholar]
- Lyu, C.; Shu, H. A two-stage cascade model with variational autoencoders and attention gates for mri brain tumor segmentation. arXiv 2020, arXiv:2011.02881. [Google Scholar]
Method | Params (M) | FLOPs | Dice (%) | HD (mm) | ||||
---|---|---|---|---|---|---|---|---|
WT | TC | ET | WT | TC | ET | |||
3D U-Net [32] | 16.21 | 1669.58 | 88.45 | 76.77 | 75.32 | 6.20 | 9.35 | 5.20 |
3D-ESPNet [33] | 3.63 | 76.52 | 88.50 | 81.35 | 73.60 | - | - | - |
Cheng et al. [34] | 13.68 | 386.20 | 87.80 | 78.57 | 72.87 | 6.33 | 10.20 | 5.96 |
Fang et al. [35] | 20.36 | 598.16 | 85.70 | 72.32 | 72.51 | 7.60 | 13.45 | 5.80 |
Evan et al. [36] | 9.52 | 203.98 | 80.67 | 68.62 | 68.03 | 14.35 | 20.05 | 14.48 |
Hu et al. [37] | 10.38 | 201.35 | 85.82 | 76.60 | 71.89 | 10.93 | 9.89 | 5.60 |
Lyu et al. [38] | 14.71 | 352.25 | 88.79 | 82.56 | 77.46 | 6.13 | 7.89 | 4.60 |
MFNet (ours) | 2.33 | 32.61 | 89.58 | 83.57 | 78.83 | 5.83 | 7.42 | 3.58 |
RMFNet (ours) | 2.65 | 37.24 | 89.62 | 83.65 | 78.72 | 5.96 | 7.56 | 3.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Ren, X.; Hou, K.; Li, W. Recurrent Multi-Fiber Network for 3D MRI Brain Tumor Segmentation. Symmetry 2021, 13, 320. https://doi.org/10.3390/sym13020320
Zhao Y, Ren X, Hou K, Li W. Recurrent Multi-Fiber Network for 3D MRI Brain Tumor Segmentation. Symmetry. 2021; 13(2):320. https://doi.org/10.3390/sym13020320
Chicago/Turabian StyleZhao, Yue, Xiaoqiang Ren, Kun Hou, and Wentao Li. 2021. "Recurrent Multi-Fiber Network for 3D MRI Brain Tumor Segmentation" Symmetry 13, no. 2: 320. https://doi.org/10.3390/sym13020320