More Effective Conditions for Oscillatory Properties of Differential Equations
Abstract
1. Introduction
- -
- Integral averaging technique.
- -
- Riccati transformations technique.
- -
- Method of comparison with first-order differential equations.
2. Lemmas
- (I)
- There exists a such that the functions are of constant sign on
- (II)
- There exists a number when r is even, when r is odd, such that, for ,for all and
3. Main Results
4. Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Bazighifan, O.; Alotaibi, H.; Mousa, A.A.A. Neutral Delay Differential Equations: Oscillation Conditions for the Solutions. Symmetry 2021, 13, 101. [Google Scholar] [CrossRef]
- Santra, S.S.; Nofal, T.A.; Alotaibi, H.; Bazighifan, O. Oscillation of Emden—Fowler-Type Neutral Delay Differential Equations. Axioms 2020, 9, 136. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J.; Graef, J.R. On the oscillation of higher-order delay differential equations. Math. Slovaca 2012, 187, 387–400. [Google Scholar] [CrossRef]
- Bazighifan, O. On the oscillation of certain fourth-order differential equations with p-Laplacian like operator. Appl. Math. Comput. 2020, 386, 125475. [Google Scholar] [CrossRef]
- Cesarano, C.; Bazighifan, O. Oscillation of fourth-order functional differential equations with distributed delay. Axioms 2019, 8, 61. [Google Scholar] [CrossRef]
- Bazighifan, O.; Abdeljawad, T.; Al-Mdallal, Q.M. Differential equations of even-order with p-Laplacian like operators: Qualitative properties of the solutions. Adv. Differ. Equ. 2021, 2021, 96. [Google Scholar] [CrossRef]
- Cesarano, C.; Pinelas, S.; Al-Showaikh, F.; Bazighifan, O. Asymptotic properties of solutions of fourth-order delay differential equations. Symmetry 2019, 11, 628. [Google Scholar] [CrossRef]
- Li, T.; Baculikova, B.; Dzurina, J.; Zhang, C. Oscillation of fourth order neutral differential equations with p-Laplacian like operators. Bound. Value Probl. 2014, 56, 41–58. [Google Scholar] [CrossRef]
- Moaaz, O.; Elabbasy, E.M.; Muhib, A. Oscillation criteria for even-order neutral differential equations with distributed deviating arguments. Adv. Differ. Equ. 2019, 2019, 297. [Google Scholar] [CrossRef]
- Philos, C. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Elabbasy, E.M.; Thandpani, E.; Moaaz, O.; Bazighifan, O. Oscillation of solutions to fourth-order delay differential equations with middle term. Open J. Math. Sci. 2019, 3, 191–197. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ramos, H. On the asymptotic and oscillatory behavior of the solutions of a class of higher-order differential equations with middle term. Appl. Math. Lett. 2020, 107, 106431. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Q.; Yu, Y. Oscillation of even-order half-linear functional differential equations with damping. Comput. Math. Appl. 2011, 61, 2191–2196. [Google Scholar] [CrossRef]
- Grace, S.; Agarwal, R.P.; Graef, J. Oscillation theorems for fourth order functional differential equations. J. Appl. Math. Comput. 2009, 30, 75–88. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Suna, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential equations. Appl. Math. Lett. 2011, 24, 1618–1621. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Grace, S.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Kiguradze, I.; Chanturia, T. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations; Kluwer Acad. Publ.: Drodrcht, The Netherlands, 1993. [Google Scholar]
- Agarwal, R.P.; Bazighifan, O.; Ragusa, M.A. Nonlinear Neutral Delay Differential Equations of Fourth-Order: Oscillation of Solutions. Entropy 2021, 23, 129. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nofal, T.A.; Bazighifan, O.; Khedher, K.M.; Postolache, M. More Effective Conditions for Oscillatory Properties of Differential Equations. Symmetry 2021, 13, 278. https://doi.org/10.3390/sym13020278
Nofal TA, Bazighifan O, Khedher KM, Postolache M. More Effective Conditions for Oscillatory Properties of Differential Equations. Symmetry. 2021; 13(2):278. https://doi.org/10.3390/sym13020278
Chicago/Turabian StyleNofal, Taher A., Omar Bazighifan, Khaled Mohamed Khedher, and Mihai Postolache. 2021. "More Effective Conditions for Oscillatory Properties of Differential Equations" Symmetry 13, no. 2: 278. https://doi.org/10.3390/sym13020278
APA StyleNofal, T. A., Bazighifan, O., Khedher, K. M., & Postolache, M. (2021). More Effective Conditions for Oscillatory Properties of Differential Equations. Symmetry, 13(2), 278. https://doi.org/10.3390/sym13020278

