Application of an Improved Ultrasound Full-Waveform Inversion in Bone Quantitative Measurement
Abstract
:1. Introduction
2. Theory of the Full-Waveform Inversion Algorithm
2.1. Forward Algorithm
2.2. Inversion Algorithm
2.2.1. Objective Function
2.2.2. Least Squares Local Optimization Method
2.2.3. Gradient
2.2.4. Regularization
2.3. Improvements on the Full-Waveform Inversion Algorithm
2.3.1. Cycle Skipping
2.3.2. Envelope Inversion
2.3.3. Joint Velocity–Density Inversion
3. Numerical Experiment
3.1. Inversion Results of the Simple Cancellous Bone
3.2. The Influence of Observation System on Inversion Results
3.2.1. Distribution of Sources and Receivers
3.2.2. Quantity of Sources and Receivers
3.2.3. Time Sampling
3.2.4. Resolution Ability of Parameter Variation
3.3. The Inversion Results of Simple Cortical Bone Model
3.4. The Long Bone Inversion
3.4.1. Gridding of Long Bone Model Parameters
3.4.2. Results of Long Bone Middle Segment Inversion
3.4.3. Results of Long Bone End Segment Inversion
3.4.4. Noise
3.5. Inversion Results of the Tibia and Fibula Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rayalam, S.; Della-Fera, M.A.; Baile, C.A. Synergism between resveratrol and other phytochemicals: Implications for obesity and osteoporosis. Mol. Nutr. Food Res. 2011, 55, 1177–1185. [Google Scholar] [CrossRef]
- Chin, K.-Y.; Ima-Nirwana, S. Can Soy Prevent Male Osteoporosis? A Review of the Current Evidence. Curr. Drug Targets 2013, 14, 1632–1641. [Google Scholar] [CrossRef]
- Schuit, S.C.E.; van der Klift, M.; Weel, A.; de Laet, C.; Burger, H.; Seeman, E.; Hofman, A.; Uitterlinden, A.G.; van Leeuwen, J.; Pols, H.A.P. Fracture incidence and association with bone mineral density in elderly men and women: The Rotterdam Study. Bone 2004, 34, 195–202. [Google Scholar] [CrossRef]
- Kalender, W.A.; Felsenberg, D.; Genant, H.K.; Fischer, M.; Dequeker, J.; Reeve, J. The European spine phantom—A tool for standardization and quality-control in spinal bone-mineral measurements by DXA and QCT. Eur. J. Radiol. 1995, 20, 83–92. [Google Scholar] [CrossRef]
- Guglielmi, G.; Damilakis, J.; Solomou, G.; Bazzocchi, A. Quality assurance of imaging techniques used in the clinical management of osteoporosis. Radiol. Med. 2012, 117, 1347–1354. [Google Scholar] [CrossRef]
- Ruegsegger, P.; Koller, B.; Muller, R. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif. Tissue Int. 1996, 58, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R. Imaging of Osteoporosis. Rheum. Dis. Clin. N. Am. 2013, 39, 609. [Google Scholar] [CrossRef]
- Laugier, P.; Droin, P.; LavalJeantet, A.M.; Berger, G. In vitro assessment of the relationship between acoustic properties and bone mass density of the calcaneus by comparison of ultrasound parametric imaging and quantitative computed tomography. Bone 1997, 20, 157–165. [Google Scholar] [CrossRef]
- Edelmann-Schaefer, B.; Berthold, L.D.; Stracke, H.; Luehrmann, P.M.; Neuhaeuser-Berthold, M. Identifying elderly women with osteoporosis by spinal dual X-Ray absorptiometry, calcaneal quantitative ultrasound and spinal quantitative computed tomography: A comparative study. Ultrasound Med. Biol. 2011, 37, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Langton, C.; Palmer, S.; Porter, R. The Measurement of Broadband Ultrasonic Attenuation in Cancellous Bone. Eng. Med. 1984, 13, 89–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raum, K.; Grimal, Q.; Varga, P.; Barkmann, R.; Glueer, C.C.; Laugier, P. Ultrasound to Assess Bone Quality. Curr. Osteoporos. Rep. 2014, 12, 154–162. [Google Scholar] [CrossRef]
- Glüer, C.; Yang, L.; Reid, D.; Felsenberg, D.; Roux, C.; Barkmann, R.; Timm, W.; Blenk, T.; Armbrecht, G.; Stewart, A.; et al. Association of Five Quantitative Ultrasound Devices and Bone Densitometry with Osteoporotic Vertebral Fractures in a Population-Based Sample: The OPUS Study. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2004, 19, 782–793. [Google Scholar] [CrossRef]
- Krieg, M.-A.; Cornuz, J.; Ruffieux, C.; Melle, G.; Bueche, D.; Dambacher, M.; Hans, D.; Hartl, F.; Häuselmann, H.; Kraenzlin, M.; et al. Prediction of Hip Fracture Risk by Quantitative Ultrasound in More than 7000 Swiss Women ≥ 70 Years of Age: Comparison of Three Technologically Different Bone Ultrasound Devices in the SEMOF Study. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2006, 21, 1457–1463. [Google Scholar] [CrossRef]
- Marin, F.; Gonzalez-Macias, J.; Diez-Perez, A.; Palma, S.; Delgado-Rodriguez, M. Relationship Between Bone Quantitative Ultrasound and Fractures: A Meta-Analysis. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2006, 21, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Tarantola, A. Inversion of seismic data in acoustic approximation. Geophysics 1984, 49, 1259–1266. [Google Scholar] [CrossRef]
- van Dongen, K.W.A.; Wright, W. A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging. J. Acoust. Soc. Am. 2006, 120, 2086–2095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Duric, N.; Littrup, P.; Huang, L. In vivo Breast Sound-Speed Imaging with Ultrasound Tomography. Ultrasound Med. Biol. 2009, 35, 1615–1628. [Google Scholar] [CrossRef] [Green Version]
- Bernard, S.; Monteiller, V.; Komatitsch, D.; Lasaygues, P. Ultrasonic computed tomography based on full-waveform inversion for bone quantitative imaging. Phys. Med. Biol. 2017, 62, 7011–7035. [Google Scholar] [CrossRef]
- Marfurt, K.J. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave-equations. Geophysics 1984, 49, 533–549. [Google Scholar] [CrossRef]
- Kreiss, H.-O.; Oliger, J. Comparison of accurate methods for the integration of hyperbolic equations. Tellus 1972, 24, 199. [Google Scholar] [CrossRef] [Green Version]
- Virieux, J. P-SV wave propagation in heterogeneous media; velocity-stress finite-difference method. Geophysics 1986, 51, 889–901. [Google Scholar] [CrossRef]
- Kelly, K.R.; Ward, R.W.; Treitel, S.; Alford, R.M. Synthetic seismograms: A finite-difference approach. Geophysics 1976, 41, 2–27. [Google Scholar] [CrossRef]
- Moczo, P.; Kristek, J.; Gális, M. The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Moczo, P.; Kristek, J.; Galis, M.; Chaljub, E.; Etienne, V. 3-D finite-difference, finite-element, discontinuous-Galerkin and spectral-element schemes analysed for their accuracy with respect to P-wave to S-wave speed ratio. Geophys. J. Int. 2011, 187, 1645–1667. [Google Scholar] [CrossRef] [Green Version]
- Sourbier, F.; Operto, S.; Virieux, J.; Amestoy, P.; L’Excellent, J.-Y. FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data-Part 2 Numerical examples and scalability analysis. Comput. Geosci. 2009, 35, 496–514. [Google Scholar] [CrossRef]
- Crase, E.; Pica, A.; Noble, M.; McDonald, J.; Tarantola, A. Robust elastic nonlinear wave-form inversion-application to real data. Geophysics 1990, 55, 527–538. [Google Scholar] [CrossRef] [Green Version]
- Pratt, R.G.; Shin, C.; Hicks, G.J. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion. Geophys. J. Int. 1998, 133, 341–362. [Google Scholar] [CrossRef]
- Shin, G.; Jang, S.; Min, D.J. Improved amplitude preservation for prestack depth migration by inverse scattering theory. Geophys. Prospect. 2001, 49, 592–606. [Google Scholar] [CrossRef]
- Nocedal, J. Updating quasi-newton matrices with limited storage. Math. Comput. 1980, 35, 773–782. [Google Scholar] [CrossRef]
- Köhn, D. Time Domain 2D Elastic Full Waveform Tomography. Ph.D. Thesis, Christian-Albrechts-Universität zu Kiel, Kiel, Germany, July 2011. [Google Scholar]
- Wang, S.-D.; Huang, W.-H. A method of velocity inversionof two dimensional acousticwave equation. Chin. J. Geophys. 1995, 38, 833–839. [Google Scholar]
- Beydoun, W.B.; Tarantola, A. 1st born and rytov approximations-modeling and inversion conditions in a canonical example. J. Acoust. Soc. Am. 1988, 83, 1045–1055. [Google Scholar] [CrossRef]
- Pratt, R.; Sirgue, L.; Hornby, B.; Wolfe, J. Crosswell Waveform Tomography in Fine-Layered Sediments-Meeting the Challenges of Anisotropy. In Proceedings of the 70th EAGE Conference and Exhibition incorporating SPE EUROPEC 2008, Rome, Italy, 9–12 June 2008. cp-40-00141. [Google Scholar]
- Bunks, C.; Saleck, F.M.; Zaleski, S.; Chavent, G. Multiscale seismic wave-form inversion. Geophysics 1995, 60, 1457–1473. [Google Scholar] [CrossRef]
- Chi, B.; Dong, L.; Liu, Y. Full waveform inversion method using envelope objective function without low frequency data. J. Appl. Geophys. 2014, 109, 36–46. [Google Scholar] [CrossRef]
- Forgoes, E.; Lambaré, G. Parameterization study for acoustic and elastic ray+born inversion. J. Seism. Explor. 1997, 6, 253–277. [Google Scholar]
- Dong, L.; Ben-Xin, C.H.I.; Ji-Xia, T.A.O.; Liu, Y. Objective-Function Behavior in Acoustic Full-Waveform Inversion. Chin. J. Geophys. 2013, 56, 685–703. [Google Scholar]
- Yang, J.-Z.; Liu, Y.-Z.; Dong, L.-G. A multi-parameter full waveform inversion strategy for acoustic media with variable density. Chin. J. Geophys. Chin. Ed. 2014, 57, 628–643. [Google Scholar]
- Günerhan, H.; Çelik, E. Analytical and approximate solutions of Fractional Partial Differential-Algebraic Equations. Appl. Math. Nonlinear Sci. 2020, 5, 109–120. [Google Scholar] [CrossRef]
- Shin, C.; Min, D.-J. Waveform inversion using a logarithmic wavefield. Geophysics 2006, 71, R31–R42. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suo, M.; Zhang, D.; Yang, Y. Application of an Improved Ultrasound Full-Waveform Inversion in Bone Quantitative Measurement. Symmetry 2021, 13, 260. https://doi.org/10.3390/sym13020260
Suo M, Zhang D, Yang Y. Application of an Improved Ultrasound Full-Waveform Inversion in Bone Quantitative Measurement. Symmetry. 2021; 13(2):260. https://doi.org/10.3390/sym13020260
Chicago/Turabian StyleSuo, Meng, Dong Zhang, and Yan Yang. 2021. "Application of an Improved Ultrasound Full-Waveform Inversion in Bone Quantitative Measurement" Symmetry 13, no. 2: 260. https://doi.org/10.3390/sym13020260
APA StyleSuo, M., Zhang, D., & Yang, Y. (2021). Application of an Improved Ultrasound Full-Waveform Inversion in Bone Quantitative Measurement. Symmetry, 13(2), 260. https://doi.org/10.3390/sym13020260