The Emergence of the Bilateral Symmetry in Animals: A Review and a New Hypothesis
Abstract
:1. Introduction
2. Symmetries in Animals and Plants
3. The Bilateral Symmetry in Animals
3.1. The Cellular Polarity and the Cell Division
3.2. Precursors for the Emergence of the Bilateral Symmetry in Animals
4. The Kinetics in a Cell
4.1. Early Embryonic Pattern Formation in Drosophila
4.2. Models for Polarity at the Emergence of the Bilateral Evolution
4.3. The Hypothesis about the Emergence of Bilateral Symmetry in Animals
5. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Djokic, T.; Van Kranendonk, M.J.; Campbell, K.A.; Walter, M.R.; Ward, C.R. Earlist signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat. Commun. 2017, 8, 15263. [Google Scholar] [CrossRef] [Green Version]
- Schopf, J.W.; Kitajima, K.; Spicuzza, M.J.; Kudryavtsev, A.B.; Valley, J.W. SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope composition. Proc. Natl. Acad. Sci. USA 2018, 115, 53–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, F.S.; Liu, A.G.; Donoghue, P.C.J. Ediacaran developmental biology. Biol. Rev. 2018, 93, 914–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedonkin, M.A.; Waggoner, B.M. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature 1997, 388, 868–871. [Google Scholar] [CrossRef]
- MacGabhann, B.A.; Schiffbauer, J.D.; Hagadorn, J.W.; Van Roy, P.; Lynch, E.P.; Morrison, L.; Murray, J. Resolution of the earliest metazoan record: Differential taphonomy of Ediacaran and Paleozoic fossil molds and casts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 513, 146–165. [Google Scholar] [CrossRef]
- Bottjer, D.J.; Hagadorn, J.W.; Dornbos, S.Q. The Cambrian Substrate Revolution. GSA Today 2000, 10, 1–7. [Google Scholar]
- Martindale, M.Q.; Henry, J.Q. The Development of Radial and Biradial Symmetry: The Evolution of Bilaterality. Am. Zool. 1998, 38, 672–6840. [Google Scholar] [CrossRef]
- Henry, J.O.; Martindale, M.Q. Evolution of Cleavage Programs in Relationship to Axial Specification and Body Plan Evolution. Biol. Bull. 1998, 195, 363–366. [Google Scholar] [CrossRef]
- Leclère, L.; Horin, C.; Chevalier, S.; Lapébie, P.; Dru, P.; Péron, S.; Jager, M.; Condamine, T.; Pottin, K.; Romano, S.; et al. The genome of the jellyfish Clytia hemisphaerica and the evolution of cnidarian life-clycle. Nat. Ecol. Evol. 2019, 3, 801–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finnerty, J.R.; Pang, K.; Burton, P.; Paulson, D.; Martindale, M.Q. Origins of Bilateral Symmetry: Hox and Dpp Expression in a Sea Anemone. Science 2004, 304, 1335–1337. [Google Scholar] [CrossRef] [Green Version]
- Putnam, N.H.; Srivastava, M.; Hellsten, U.; Dirks, B.; Chapman, J.; Salamov, A.; Terry, A.; Shapiro, H.; Lindquist, E.; Kapitonov, V.V.; et al. See Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organisation. Science 2007, 317, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Foster, C.S.P.; Sauquet, H.; Van der Merwe, M.; McPherson, H.; Rossetto, M.; Ho, S.Y.W. Evaluating the Impact of Genomic Data and Priors on Baysian Estimates of the Angiosperm Evolutionary Timescale. Syst. Biol. 2017, 66, 338–351. [Google Scholar] [PubMed] [Green Version]
- Sauquet, H.; von Balthazar, M.; Magallón, S.; Doyle, J.A.; Endress, P.K.; Bailes, E.J.; de Morais, E.B.; Bull-Hereñu, K.; Carrive, L.; Chartier, M.; et al. The ancestral flower of angiosperms and its early diversification. Nat. Commun. 2017, 8, 16047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, P.; Muñoz, A.; Martín, J. Symmetry, male dominance and female mate preferences in the Iberian rock lizard, Lacerta monticola. Behav. Ecol. Sociobiol. 2002, 52, 342–347. [Google Scholar]
- Little, A.C.; Jones, B.C.; Waitt, C.; Tiddeman, B.P.; Feinberg, D.R.; Perrett, D.I.; Apicella, C.L.; Marlowe, F.W. Symmetry Is Related to Sexual Dimorphism in Faces: Data Across Culture and Scecies. PLoS ONE 2008, 3, e2106. [Google Scholar] [CrossRef] [Green Version]
- McManus, I.C. Symmetry and asymmetry in aesthetics and the arts. Eur. Rev. 2005, 13, 150–180. [Google Scholar] [CrossRef]
- Palmer, A.R. What determines direction of asymmtry: Genes, environment or change? Phil. Trans. R Soc. B 2016, 371, 20150417. [Google Scholar] [CrossRef] [Green Version]
- Grimes, D.T.; Burdine, R.D. Left-Right Patterning: Breaking Symmetry to Asymmetric Morphogenesis. Trends Genet. 2017, 33, 619–628. [Google Scholar] [CrossRef]
- Blum, M.; Ott, T. Animal left-right asymmetry. Curr. Biol. 2018, 28, R293–R305. [Google Scholar] [CrossRef] [Green Version]
- Zong, R.; Gong, Y. Behavioural asymmetry in Devonian trilobites. Palaeogeogr. Paleoclimatol. Plaeocol. 2017, 476, 158–162. [Google Scholar] [CrossRef]
- Govind, C.K. Claw Asymmetry in Lobsters: Case Study in Developmental Neuroethology. J. Neurobiol. 1092, 23, 1423–1445. [Google Scholar] [CrossRef] [PubMed]
- Perez, D.M.; Heatwole, S.J.; Morrell, L.J.; Backwell, P.R.Y. Handedness in fiddler crab fights. Anim. Behav. 2015, 110, 99–104. [Google Scholar] [CrossRef]
- Friedman, M. The evolutionary origin of flatfish asymmetry. Nature 2008, 454, 209–212. [Google Scholar] [CrossRef]
- De Kovel, C.G.; Lisgo, S.; Karlebach, G.; Ju, J.; Cheng, G.; Fisher, S.E.; Francks, C. Left-Right Asymmetry of Maturation Rates in Human Embryonic Neural Development. Biol. Pshychiatry 2017, 82, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Matthews, B.W.; Bernhard, S.A. Oligomeric Enzymes. Annu. Rev. Biophys. Bioeng. 1973, 2, 257–317. [Google Scholar] [CrossRef]
- Kojić-Prodić, B.; Štefanić, Z. Symmetry vercus Asymmetry in the Molecules of Life: Homomeric Protein Assemblies. Symmetry 2010, 2, 885–906. [Google Scholar]
- Li, R.; Bowerman, B. Symmetry Breaking in Biology. Cold Spring Harb. Perspect. Biol. 2009, 1, a0013221. [Google Scholar] [CrossRef]
- Dworkin, J. Cellular Polarity in Prokaryotic Organisms. Cold Spring Harb. Perspect. Biol. 2009, 1, a003368. [Google Scholar] [CrossRef] [Green Version]
- Buskila, A.A.; Kannaiah, S.; Amster-Choder, O. RNA localization in bacteria. RNA Biol. 2014, 11, 1051–1060. [Google Scholar] [CrossRef] [Green Version]
- Laloux, G.; Jacobs-Wagner, C. How do bacteria localize proteins to the cell pole. J. Cell Sci. 2014, 127, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.J.B.; Kysela, D.T.; Brun, Y.V. Polarity and the diversity of growth mechanisms in bacteria. Semin. Cell Dev. Biol. 2011, 22, 791–798. [Google Scholar] [CrossRef] [Green Version]
- Orlando, K.; Guo, W. Membrane Organisation and Dynamics in Cell Polarity. Cold Spring Harb. Perspect. Biol. 2010, 2, a003475. [Google Scholar]
- Kim, E.J.Y.; Korotkevich, E.; Hiraga, T. Coordination of Cell Polarity, Mechanics and Fate in Tissue Self-organization. Trends Cell Biol. 2018, 28, 541–550. [Google Scholar] [CrossRef]
- Manuel, M. Early evolution of symmetry and polarity in metazoan body plans. C. R. Biol. 2009, 332, 184–209. [Google Scholar] [CrossRef]
- Holló, G. Demystification of Animal symmetry: Symmetry is a responce to mechanical forces. Biol. Direct 2017, 12, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Spitzer, J. From Water and Ions to Crowded Biomolecules: In Vivo Structuring of a Prokaryotic Cell. Microbiol. Mol. Biol. Rev. 2011, 75, 491–506. [Google Scholar] [CrossRef] [Green Version]
- Toxvaerd, S. Perturbation Theory for Nonuniform Fluids: Surface Tension. J. Chem. Phys. 1971, 55, 3116–3120. [Google Scholar] [CrossRef]
- Toxvaerd, S. Origin of Homochirality in Biosystems. Int. J. Mol. Sci. 2009, 10, 1290–1299. [Google Scholar] [CrossRef]
- Toxvaerd, S. The Role of Carbohydrates at the Origin of Homochirality in Biosystems. Orig. Life Evol. Biosph. 2013, 43, 391–409. [Google Scholar] [CrossRef] [Green Version]
- Mauksch, M.; Wei, S.; Freund, M.; Zamfir, A.; Tsogoeva, S.B. Spontaneous Mirror Symmetry Breaking in the Aldol Reaction and its Potential Relevance in Prebiotic Chemistry. Orig. Life Evol. Biosph. 2010, 40, 79–91. [Google Scholar] [CrossRef]
- Toxvaerd, S. The start of the Abiogenesis: Preservation of homochirality in proteins as a necessary and sufficient condition for the establishment of the metabolism. J. Teor. Biol. 2018, 451, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Change, B. Oscillations of Glycolytic intermediates in yeast cells. Biochem. Biophys. Res. Commun. 1964, 16, 174–181. [Google Scholar] [CrossRef]
- Danø, S.; Sørensen, P.G.; Hynne, F. Sustained oscillations in living cells. Nature 1999, 402, 320–322. [Google Scholar]
- Hynne, F.; Danø, S.; Sørensen, P.G. Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys. Chem. 2001, 94, 121–163. [Google Scholar] [CrossRef]
- McGinnis, W.; Gerber, R.L.; Wirz, J.; Kuroiwa, A.; Gehring, W.J. A homologous Protein-Coding Sequence in Drosophila Homeotic Genes and Its Conservation in Other Metazoans. Cell 1984, 37, 403–408. [Google Scholar] [CrossRef]
- Carrasco, A.E.; McGinnis, W.; Gehring, W.J.; De Robertis, E.-M. Cloning of an X. laevis Gene Expressed during Early Embryogenesis Coding for a Peptide Region Homologous to Drosophila Homeotic Genes. Cell 1984, 37, 409–414. [Google Scholar] [CrossRef]
- Sakuma, C.; Kawauchi, T.; Haraguchi, S.; Shikanai, M.; Yamaguchi, Y.; Gelfand, V.I.; Luo, L.; Miura, M.; Chihara, T. Drosophila Strip serves as a platform for early endosome organization during axon elongation. Nat. Commun. 2014, 5, 5180. [Google Scholar] [CrossRef] [Green Version]
- Pearson, J.C.; Lemons, D.; McGinnis, W. Modulating hox gene functions during animal body pattering. Nat. Rev. Genet. 2005, 6, 893–905. [Google Scholar] [CrossRef]
- Solnica-Krezel, L.; Sepich, D.S. Gastrulation: Making and Shaping Germ Layers. Annu. Rev. Cell Del. Biol. 2012, 28, 687–717. [Google Scholar] [CrossRef] [Green Version]
- Misra, M.; Audoly, B.; Shvartsman, S.Y. Complex structures from patterned cell sheets. Phil. Trans. R. Soc. B 2017, 372, 20150515. [Google Scholar] [CrossRef] [Green Version]
- Fujioka, M.; Sun, G.; Jaynes, J.B. The Drosophila eve Insolator Homie Promotes eve Expression and Protects the Adjacent Gene from Repression by Polycomb Spreading. PLoS Genet. 2013, 9, e1003883. [Google Scholar] [CrossRef]
- Hunding, A.; Kauffman, S.A.; Goodwin, B.C. Drosophila Segmentation: Supercomputer Simulation of Prepattern Hierarchy. J. Theor. Biol. 1990, 145, 369–384. [Google Scholar] [CrossRef]
- Bozorgui, B.; Komeisky, A.B.; Teimouri, H. Physical-chemical mechanisms of pattern formation during gastrulation. J. Chem. Phys. 2018, 148, 123302. [Google Scholar] [CrossRef] [Green Version]
- Turing, A.M. The chemical basis of Morphogenesis. Phil. Trans. R. Soc. B 1952, 237, 37–72. [Google Scholar]
- Hunding, A.; Sørensen, P.G. Size adaptation to Turing prepatterns. J. Math. Biol. 1988, 26, 27–39. [Google Scholar] [CrossRef]
- Seĺkov, E.E. Self-Oscillations in Glycolysis. Eur. J. Biochem. 1968, 4, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Toxvaerd, S. A Prerequisite for Life. J. Theor. Biol. 2019, 474, 48–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toxvaerd, S. The Emergence of the Bilateral Symmetry in Animals: A Review and a New Hypothesis. Symmetry 2021, 13, 261. https://doi.org/10.3390/sym13020261
Toxvaerd S. The Emergence of the Bilateral Symmetry in Animals: A Review and a New Hypothesis. Symmetry. 2021; 13(2):261. https://doi.org/10.3390/sym13020261
Chicago/Turabian StyleToxvaerd, Søren. 2021. "The Emergence of the Bilateral Symmetry in Animals: A Review and a New Hypothesis" Symmetry 13, no. 2: 261. https://doi.org/10.3390/sym13020261