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1. Introduction

Riemann solitons are generalized fixed points of the Riemann flow. In the context
of contact geometry, Hirica and Udriste proved [1] that if a Sasakian manifold admited a
Riemann soliton with potential vector field pointwise collinear with the structure vector
field, then it was a Sasakian space form. In [2], Blaga and Latcu studied almost Riemann
solitons and almost Ricci solitons in an (α, β)-contact metric manifold satisfying some Ricci
symmetry conditions, treating the case when the potential vector field of the soliton was
pointwise collinear with the structure vector field. Geometric flows have many physical
applications. Here we call attention to certain important applications of the Ricci flow the-
ory in the study of nonlinear sigma models [3–6], research on geometric flow evolution of
modified (non) holonomic commutative and noncommutative gravity theories [7–10], and
exact solutions for (modified) gravity and geometric flows, Ricci solitons [11–15]. In [16],
Calvaruso studied three-dimensional generalized Ricci solitons, both in Riemannian and
Lorentzian settings. He determined their homogeneous models, classifying left-invariant
generalized Ricci solitons on three-dimensional Lie groups. In [17], Batat and Onda studied
algebraic Ricci solitons of three-dimensional Lorentzian Lie groups. They got a complete
classification of algebraic Ricci solitons of three-dimensional Lorentzian Lie groups. In [18],
Calvaruso completely classify three-dimensional homogeneous manifolds equipped with
Einstein-like metrics. In [19], we classify affine Ricci solitons associated to canonical con-
nections and Kobayashi–Nomizu connections and perturbed canonical connections and
perturbed Kobayashi–Nomizu connections on three-dimensional Lorentzian Lie groups
with some product structure. In this note, we completely classify the left-invariant Riemann
solitons on three-dimensional Lorentzian Lie groups.

2. Left-Invariant Riemann Solitons of Three-Dimensional Lorentzian Lie Groups

Three-dimensional Lorentzian Lie groups have been classified in [20,21] (see Theorems
2.1 and 2.2 in [17]). Throughout this paper, we shall by {Gi}i=1,··· ,7, denote the connected,
simply connected three-dimensional Lie group equipped with a left-invariant Lorentzian
metric g and having Lie algebra {g}i=1,··· ,7. Let ∇ be the Levi–Civita connection of Gi and
R its curvature tensor, taken with the convention:

R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z. (1)
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Let R(X, Y, Z, W) = −g(R(X, Y)Z, W). Riemann solitons are defined by a smooth
vector field and a real constant λ which satisfy the following equation:

R +
1
2

LV g ∧ g =
λ

2
g ∧ g, (2)

where LV g denotes the Lie derivative of g and ∧ is the Kulkarni–Nomizu product. Let T1
and T2 be two arbitrary (0, 2)-tensors, then their Kulkarni–Nomizu product is defined by:

T1 ∧ T2(X, Y, Z, W) := T1(X, W)T2(Y, Z) + T1(Y, Z)T2(X, W) (3)

− T1(X, Z)T2(Y, W)− T1(Y, W)T2(X, Z),

for any X, Y, Z, W ∈ Γ(TGi), where Γ(TGi) denotes the set of all vector fields on Gi. By (2)
and (3), we can express the Riemann soliton as follows:

2R(X, Y, Z, W) + g(X, W)(LV g)(Y, Z) + g(Y, Z)(LV g)(X, W) (4)

− g(X, Z)(LV g)(Y, W)− g(Y, W)(LV g)(X, Z)

= 2λ[g(X, W)g(Y, Z)− g(X, Z)g(Y, W)].

For Gi, there exists a pseudo-orthonormal basis {e1, e2, e3} with e3 timelike. Let
V = λ1e1 + λ2e2 + λ3e3, where λ1, λ2, λ3 are real numbers. Let Rijkl = R(ei, ej, ek, el). Then
(Gi, V, g) is a left-invariant Riemann soliton if and only if:

2R1212 − (LV g)(e2, e2)− (LV g)(e1, e1) = −2λ,
2R1312 − (LV g)(e2, e3) = 0,
2R2312 + (LV g)(e1, e3) = 0,
2R1313 − (LV g)(e3, e3) + (LV g)(e1, e1) = 2λ,
2R2313 + (LV g)(e1, e2) = 0,
2R2323 − (LV g)(e3, e3) + (LV g)(e2, e2) = 2λ.

(5)

By Theorem 2.1 in [17], we have for G1, there exists a pseudo-orthonormal basis
{e1, e2, e3} with e3 timelike such that the Lie algebra of G1 satisfies:

[e1, e2] = αe1 − βe3, [e1, e3] = −αe1 − βe2, [e2, e3] = βe1 + αe2 + αe3, α 6= 0. (6)

By (2.18) in [18], we have for G1:

R1212 = −2α2 − β2

4
, R1313 =

β2

4
− 2α2, R2323 =

β2

4
, (7)

R1213 = 2α2, R1223 = −αβ, R1323 = αβ.

Let,

LV g =

 (LV g)(e1, e1) (LV g)(e1, e2) (LV g)(e1, e3)
(LV g)(e2, e1) (LV g)(e2, e2) (LV g)(e2, e3)
(LV g)(e3, e1) (LV g)(e3, e2) (LV g)(e3, e3)

. (8)

By page 7 in [16], we get for G1,

LV g =

 2α(λ2 − λ3) −αλ1 αλ1
−αλ1 2αλ3 −α(λ2 + λ3)
αλ1 −α(λ2 + λ3) 2αλ2

. (9)

By (5), (7), and (9) and α 6= 0, we get that (G1, V, g) is a left-invariant Riemann soliton
if and only if:
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−2α2 − β2

4 − αλ2 = −λ,
4α + λ2 + λ3 = 0,
λ1 = 2β,
β2

4 − 2α2 − αλ3 = λ,
β2

2 − 2αλ2 + 2αλ3 = 2λ.

(10)

The first equation plusing the fourth equation in (10), we get λ2 + λ3 + 4α = 0. By
the fourth equation and the fifth equation in (10), we have λ2 − 2λ3 − 2α = 0. Then

λ2 = λ3 = −2α. By the first equation in (10), we get λ = β2

4 . So we have:

Theorem 1. (G1, V, g) is a left-invariant Riemann soliton if and only if λ1 = 2β, λ2 = −2α,

λ3 = −2α, λ = β2

4 .

By Theorem 2.1 in [17], we have for G2, there exists a pseudo-orthonormal basis
{e1, e2, e3} with e3 timelike such that the Lie algebra of G2 satisfies:

[e1, e2] = γe2 − βe3, [e1, e3] = −βe2 − γe3, [e2, e3] = αe1, γ 6= 0. (11)

By page 144 in [17], we have for G2:

R1212 = −γ2 − α2

4
, R1313 =

α2

4
+ γ2, R2323 = −γ2 − 3

4
α2 + αβ, (12)

R1213 = γ(2β− α), R1223 = 0, R1323 = 0.

By page 8 in [16], we get for G2 (we correct a misprint in [16]),

LV g =

 0 γλ2 + (α− β)λ3 (−α + β)λ2 + γλ3
γλ2 + (α− β)λ3 −2γλ1 0
(−α + β)λ2 + γλ3 0 −2γλ1

. (13)

By (5), (12) and (13), we get that (G2, V, g) is a left-invariant Riemann soliton if and
only if: 

−γ2 − α2

4 + γλ1 = −λ,
γ(2β− α) = 0,
(−α + β)λ2 + γλ3 = 0,
α2

4 + γ2 + γλ1 = λ,
γλ2 + (α− β)λ3 = 0,
−γ2 − 3

4 α2 + αβ = λ.

(14)

By the first equation and the fourth equation and γ 6= 0 in (14), we get λ1 = 0 and
λ = α2

4 + γ2. By the second equation and the sixth equation in (14), we get λ = − α2

4 − γ2.
Then γ = 0 and this is a contradiction. So,

Theorem 2. (G2, V, g) is not a left-invariant Riemann soliton.

By Theorem 2.1 in [17], we have for G3, there exists a pseudo-orthonormal basis
{e1, e2, e3} with e3 timelike such that the Lie algebra of G3 satisfies:

[e1, e2] = −γe3, [e1, e3] = −βe2, [e2, e3] = αe1. (15)

By page 146 in [17], we have for G3:

R1212 = −(a1a2 + γa3), R1313 = a1a3 + βa2, R2323 = −(a2a3 + αa1), (16)

R1213 = 0, R1223 = 0, R1323 = 0,
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where
a1 =

1
2
(α− β− γ), a2 =

1
2
(α− β + γ), a3 =

1
2
(α + β− γ). (17)

By page 9 in [16], we get for G3,

LV g =

 0 (α− β)λ3 (γ− α)λ2
(α− β)λ3 0 (β− γ)λ1
(γ− α)λ2 (β− γ)λ1 0

. (18)

By (5), (16) and (18), we get that (G3, V, g) is a left-invariant Riemann soliton if and
only if: 

a1a2 + γa3 = λ,
(β− γ)λ1 = 0,
(α− γ)λ2 = 0,
(α− β)λ3 = 0,
a1a3 + βa2 = λ,
a2a3 + αa1 = −λ.

(19)

Theorem 3. (G3, V, g) is a left-invariant Riemann soliton if and only if:

(i) β = γ, α 6= γ, λ2 = λ3 = 0, α = 0, λ = 0,
(ii) α = β = γ, λ = 1

4 α2,
(iii) β 6= γ, α = β, λ1 = λ2 = 0, γ = 0, λ = 0,
(iv) β 6= γ, α = γ, λ1 = λ3 = 0, β = 0, λ = 0.

Proof. By the first equation and the fifth equation in (19), we get a1(a2− a3) + γa3− βa2 =
0. By (17), then we get (α− β− γ)(β− γ) = 0. By the fifth equation and the sixth equation
in (19), we get (α + β− γ)(α− β) = 0 and:

(β− γ)λ1 = 0,
(α− γ)λ2 = 0,
(α− β)λ3 = 0,
(α− β− γ)(β− γ) = 0,
(α + β− γ)(α− β) = 0,
λ = a1a2 + γa3.

(20)

Case (1) β 6= γ, α 6= γ, α 6= β. Then by the fourth equation and the fifth equation in
(20), we get α = γ. This is a contradiction and there are no solutions.

Case (2) β = γ, α 6= γ. Solving (20), we get the case (i).
Case (3) α = β = γ. Solving (20), we get the case (ii).
Case (4) β 6= γ, α = β. Solving (20), we get the case (iii).
Case (5) β 6= γ, α = γ. Solving (20), we get the case (iv).

By Theorem 2.1 in [17], we have for G4, there exists a pseudo-orthonormal basis
{e1, e2, e3} with e3 timelike such that the Lie algebra of G4 satisfies:

[e1, e2] = −e2 + (2η − β)e3, η = 1 or− 1, [e1, e3] = −βe2 + e3, [e2, e3] = αe1. (21)

By (2.32) in [18], we have for G4:

R1212 = (2η − β)b3 − b1b2 − 1, R1313 = b1b3 + βb2 + 1, R2323 = −(b2b3 + αb1 + 1), (22)

R1213 = 2η − β + b1 + b2, R1223 = 0, R1323 = 0,

where
b1 =

α

2
+ η − β, b2 =

α

2
− η, b3 =

α

2
+ η. (23)
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By page 11 in [16], we get for G4,

LV g =

 0 −λ2 + (α− β)λ3 (β− α− 2η)λ2 − λ3
−λ2 + (α− β)λ3 2λ1 2ηλ1

(β− α− 2η)λ2 − λ3 2ηλ1 2λ1

. (24)

By (5), (22) and (24), we get that (G4, V, g) is a left-invariant Riemann soliton if and
only if: 

(2η − β)b3 − b1b2 − 1− λ1 = −λ,
2η − β + b1 + b2 − ηλ1 = 0,
(β− α− 2η)λ2 − λ3 = 0,
b1b3 + βb2 + 1− λ1 = λ,
−λ2 + (α− β)λ3 = 0,
−(b2b3 + αb1 + 1) = λ.

(25)

Theorem 4. (G4, V, g) is a left-invariant Riemann soliton if and only if:

(i) β 6= η, α = 0, λ1 = 2− 2ηβ, λ2 = λ3 = 0, λ = 0,

(ii) α− β + η = 0, λ2 = −ηλ3, λ1 = 1− ηβ, λ = α2

4 .

Proof. The fourth equation minusing the first equation in (25), we get b1b3 + βb2 + 1−
(2η − β)b3 + b1b2 + 1 = 2λ. By the sixth equation in (25), we get α(α− β + η) = 0.

Case (1) α− β + η 6= 0. Then α = 0, solving (25), we get case (i).
Case (2) α− β + η = 0. Solving (25), we get case (ii).

By Theorem 2.2 in [17], we have for G5, there exists a pseudo-orthonormal basis
{e1, e2, e3} with e3 timelike such that the Lie algebra of G5 satisfies:

[e1, e2] = 0, [e1, e3] = αe1 + βe2, [e2, e3] = γe1 + δe2, α + δ 6= 0, αγ + βδ = 0. (26)

By (2.36) in [18], we have for G5:

R1212 = αδ− (β + γ)2

4
, R1313 = −α2 − β(β + γ)

2
− β2 − γ2

4
, (27)

R2323 = −δ2 − γ(β + γ)

2
+

β2 − γ2

4
, R1213 = 0, R1223 = 0, R1323 = 0.

By page 13 in [16], we get for G5,

LV g =

 2αλ3 (β + γ)λ3 −αλ1 − γλ2
(β + γ)λ3 2δλ3 −βλ1 − δλ2
−αλ1 − γλ2 −βλ1 − δλ2 0

. (28)

By (5), (27), and (28), we get that (G5, V, g) is a left-invariant Riemann soliton if and
only if: 

αδ− (β+γ)2

4 − δλ3 − αλ3 = −λ,
βλ1 + δλ2 = 0,
αλ1 + γλ2 = 0,

−α2 − β(β+γ)
2 − β2−γ2

4 + αλ3 = λ,
(β + γ)λ3 = 0,

−δ2 − γ(β+γ)
2 + β2−γ2

4 + δλ3 = λ.

(29)

Theorem 5. (G5, V, g) is a left-invariant Riemann soliton if and only if:

(i) β + γ = 0, β 6= 0, α = δ, α 6= 0, λ1 = λ2 = λ3 = 0, λ = −α2,
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(ii) β = γ = 0, α = δ, α 6= 0, λ1 = λ2 = λ3 = 0, λ = −α2.

Proof. Case (1) β + γ 6= 0. Then λ3 = 0. By the fourth equation and the sixth equation in
(29), we get α2 − δ2 + β2 − γ2 = 0. By the first equation and the fourth equation in (29), we
get α2 + β2 + βγ− αδ = 0.

Case (1-a) βγ− αδ = 0. We get α = β = γ = δ = 0. This is a contradiction.
Case (1-b) βγ− αδ 6= 0. By the second equation and the third equation in (29), we get

λ1 = λ2 = 0.
Case (1-b-1) α = 0. Then δ 6= 0 and β = 0, then δ = γ = 0 by α2 − δ2 + β2 − γ2 = 0.

This is a contradiction.
Case (1-b-2) α 6= 0. Then γ = − βδ

α . Then β 6= 0 and α 6= δ by β + γ 6= 0. By α + δ 6= 0,

then α2 6= δ2. By α2 − δ2 + β2 − γ2 = 0, we get 1 + β2

α2 = 0. This is a contradiction.
Case (2) β + γ = 0. By (29), we have:

αδ− δλ3 − αλ3 = −λ,
βλ1 + δλ2 = 0,
αλ1 + γλ2 = 0,
−α2 + αλ3 = λ,
−δ2 + δλ3 = λ.

(30)

By αγ + βδ = 0, we have β(α− δ) = 0.
Case (2-a) β 6= 0. Then α = δ. Solving (30), we get the case (i).
Case (2-b) β = 0. Then γ = 0. So δλ2 = 0, αλ1 = 0.
Case (2-b-1) α 6= 0, δ 6= 0. Then λ1 = λ2 = 0. Solving (30), we get the case (ii).
Case (2-b-2) α = 0, δ 6= 0. Solving (30), we get δ = 0. This is a contradiction.
Case (2-b-3) α 6= 0, δ = 0. Solving (30), we get α = 0. This is a contradiction.

By Theorem 2.2 in [17], we have for G6, there exists a pseudo-orthonormal basis
{e1, e2, e3} with e3 timelike such that the Lie algebra of G6 satisfies:

[e1, e2] = αe2 + βe3, [e1, e3] = γe2 + δe3, [e2, e3] = 0, α + δ 6= 0, αγ− βδ = 0. (31)

By (2.40) in [18], we have for G6:

R1212 = −α2 +
β(β− γ)

2
+

β2 − γ2

4
, R1313 = δ2 +

γ(β− γ)

2
+

β2 − γ2

4
, (32)

R2323 = αδ +
(β− γ)2

4
, R1213 = 0, R1223 = 0, R1323 = 0.

By page 14 in [16], we get for G6,

LV g =

 0 αλ2 + γλ3 −βλ2 − δλ3
αλ2 + γλ3 −2αλ1 (β− γ)λ1
−βλ2 − δλ3 (β− γ)λ1 2δλ1

. (33)

By (5), (32), and (33), we get that (G6, V, g) is a left-invariant Riemann soliton if and
only if: 

−α2 + β(β−γ)
2 + β2−γ2

4 + αλ1 = −λ,
(β− γ)λ1 = 0,
βλ2 + δλ3 = 0,

δ2 + γ(β−γ)
2 + β2−γ2

4 − δλ1 = λ,
αλ2 + γλ3 = 0,

αδ + (β−γ)2

4 − δλ1 − αλ1 = λ.

(34)

Theorem 6. (G6, V, g) is a left-invariant Riemann soliton if and only if:
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(i) β 6= γ, λ1 = 0, α = β = 0, λ = γ2

4 , λ3 = 0, δ2 = γ2,

(ii) β 6= γ, λ1 = 0, α 6= 0, α2 = β2, δ = βγ
α , λ = (β+γ)2

4 , λ2 = − γ
α λ3,

(iii) β = γ, β 6= 0, α = δ, α 6= 0, λ1 = λ2 = λ3 = 0, λ = α2,
(iv) λ3 6= 0, λ2 = − δ

β λ3, α 6= 0, β 6= 0, β = γ, α = δ, α2 = β2, λ1 = 0, λ = α2,
(v) β = γ = 0, α 6= 0, δ 6= 0, λ1 = λ2 = λ3 = 0, α = δ, λ = α2.

Proof. Case (1) β− γ 6= 0. Then λ1 = 0. So by the first, the fourth, and sixth equations in
(34), we get:

δ2 − α2 + β2 − γ2 = 0, α2 − β2 + βγ− αδ = 0. (35)

Case (1-a) βγ− αδ = 0. So α2 = β2 and δ2 = γ2 by (35).
Case (1-a-1) α = 0. Solving (34), we get the case (i).
Case (1-a-2) α 6= 0. Then δ = βγ

α . Solving (34), we get the case (ii).
Case (1-b) βγ− αδ 6= 0. So λ2 = λ3 = 0.
Case (1-b-1) α = 0. So δ 6= 0 and β = 0. This is a contradiction with βγ− αδ 6= 0.
Case (1-b-2) α 6= 0. We get γ = βδ

α and α2 = β2 by (35). Then βγ− αδ = 0. This is
a contradiction.

Case (2) β− γ = 0. Then β(α− δ) = 0. By (34), we have:
−α2 + αλ1 = −λ,
βλ2 + δλ3 = 0,
δ2 − δλ1 = λ,
αλ2 + γλ3 = 0,
αδ− δλ1 − αλ1 = λ.

(36)

Case (2-a) β 6= 0. Then α = δ and λ2 = − δ
β λ3 = − γ

α λ3.
Case (2-a-1) λ3 = 0. Then we get the case (iii).
Case (2-a-2) λ3 6= 0. Then we get the case (iv).
Case (2-b) β = 0. Then γ = 0 and δλ3 = 0, αλ2 = 0.
Case (2-b-1) α 6= 0, δ 6= 0. Then λ2 = λ3 = 0. Solving (36), we get the case (v).
Case (2-b-2) α = 0, δ 6= 0. Solving (36), we get δ = 0. This is a contradiction.
Case (2-b-3) α 6= 0, δ = 0. Solving (36), we get α = 0. This is a contradiction.

By Theorem 4.2 in [17], we have for G7, there exists a pseudo-orthonormal basis
{e1, e2, e3} with e3 timelike such that the Lie algebra of G7 satisfies:

[e1, e2] = −αe1 − βe2 − βe3, [e1, e3] = αe1 + βe2 + βe3, [e2, e3] = γe1 + δe2 + δe3, , α + δ 6= 0, αγ = 0. (37)

By (2.44) in [18], we have for G7:

R1212 = αδ− α2 − βγ− γ2

4
, R1313 = αδ− α2 − βγ +

γ2

4
, (38)

R2323 = −3
4

γ2, R1213 = α2 − αδ + βγ, R1223 = 0, R1323 = 0.

By page 16 in [16], we get for G7,

LV g =

 −2α(λ2 − λ3) αλ1 − βλ2 + (β + γ)λ3 −αλ1 + (β− γ)λ2 − βλ3
αλ1 − βλ2 + (β + γ)λ3 2βλ1 + 2δλ3 −2βλ1 − δλ2 − δλ3
−αλ1 + (β− γ)λ2 − βλ3 −2βλ1 − δλ2 − δλ3 2βλ1 + 2δλ2

. (39)

By (5), (38), and (39), we get that (G7, V, g) is a left-invariant Riemann soliton if and
only if:
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αδ− α2 − βγ− γ2

4 − (βλ1 + δλ3) + α(λ2 − λ3) = −λ,
2(α2 − αδ + βγ) + 2βλ1 + δλ2 + δλ3 = 0,
−αλ1 + (β− γ)λ2 − βλ3 = 0,

αδ− α2 − βγ + γ2

4 − βλ1 − δλ2 − α(λ2 − λ3) = λ,
αλ1 − βλ2 + (β + γ)λ3 = 0,
− 3

4 γ2 − δλ2 + δλ3 = λ.

(40)

Theorem 7. (G7, V, g) is a left-invariant Riemann soliton if and only if:

(i) α = 0, δ 6= 0, β = γ = 0, λ2 = λ3 = λ = 0,
(ii) α = 0, δ 6= 0, γ = 0, β 6= 0, λ2 = λ3, λ = 0, λ1 = − δ

β λ2,
(iii) α 6= 0, γ = 0, α = δ, λ1 = λ2 = λ3 = λ = 0.

Proof. Case (1) α = 0. Then δ 6= 0. By (40), we have:

−βγ− γ2

4 − (βλ1 + δλ3) = −λ,
2βγ + 2βλ1 + δλ2 + δλ3 = 0,
(β− γ)λ2 − βλ3 = 0,

−βγ + γ2

4 − βλ1 − δλ2 = λ,
−βλ2 + (β + γ)λ3 = 0,
− 3

4 γ2 − δλ2 + δλ3 = λ.

(41)

Case (1-a) γ 6= 0. Then λ2 = λ3 = 0 by the third equation and the fifth equation in
(41). By (41), we have: 

−βγ− γ2

4 − βλ1 = −λ,
βγ + βλ1 = 0,

−βγ + γ2

4 − βλ1 = λ,
− 3

4 γ2 = λ.

(42)

Case (1-a-1) β = 0. By (42), we get γ = 0. This is a contradiction.
Case (1-a-2) β 6= 0. By (42), we get λ1 = −γ and γ = 0. This is a contradiction.
Case (1-b) γ = 0. By (41), we have:

βλ1 + δλ3 = λ,
2βλ1 + δλ2 + δλ3 = 0,
β(λ2 − λ3) = 0,
−βλ1 − δλ2 = λ,
−δλ2 + δλ3 = λ.

(43)

Case (1-b-1) β = 0. Solving (43), we get the case (i).
Case (1-b-2) β 6= 0. Solving (43), we get the case (ii).
Case (2) α 6= 0. Then γ = 0. By (40), we get:

αδ− α2 − (βλ1 + δλ3) + α(λ2 − λ3) = −λ,
2(α2 − αδ) + 2βλ1 + δλ2 + δλ3 = 0,
−αλ1 + βλ2 − βλ3 = 0,
αδ− α2 − βλ1 − δλ2 − α(λ2 − λ3) = λ,
−δλ2 + δλ3 = λ.

(44)

By the third equation in (44), we have λ1 = β
α (λ2 − λ3). By the first, the second, and

the fourth equations in (44), we get α = δ and 2βλ1 + δλ2 + δλ3 = 0. By the fourth and the
fifth equations in (44), we get βλ1 + δλ2 = 0 and λ2 = λ3. Then by the fifth equation in
(44), we get λ = 0. So λ1 = λ2 = λ3 = 0. This is the case (iii).
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3. Conclusions

During the last years, geometric evolution equations have been used to study geometric
questions like isoperimetric inequalities, the Poincare conjecture, and Thurston’s geometriza-
tion conjecture. In particular, the geometric flow enjoys rapid growth. The Riemann flow is
an important geometric flow. Riemann solitons are generalized fix points of the Riemann
flow. Thus it is interesting to study Riemann solitons. In this note, a classification of Rie-
mann solitons on three dimensional Lorentzian Lie group was given. In particular, (G2, V, g)
was not a left-invariant Riemann soliton, while (Gi, V, g) for i = 1, 3, 4, 5, 6, and 7, were left
invariant Riemann solitons if and only if the parameters satisfied particular conditions.

Our classified theorems are proven by some algebraic calculations. In fact, by (5),
we needed to compute the geometric objects Rijkl and LV(ei, ej). Moreover our classified
theorems will have some geometric applications.
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