Stability Analysis and Cauchy Matrix of a Mathematical Model of Hepatitis B Virus with Control on Immune System near Neighborhood of Equilibrium Free Point
Abstract
:1. Introduction
2. Modified Model of HBV
3. Exponential Stability of System (6) in the Neighborhood of the Equilibrium Free Point
4. Constructing the Cauchy Matrix of System (8)
5. Exponential Stability of a System with an Uncertain Coefficient
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yousdi, N.; Hattaf, K.; Rachik, M. Analysis of a HCV model with CTL and antibody responses. Appl. Math. Sci. 2009, 3, 2835–2845. [Google Scholar]
- Salvo, L.; Sebastiano, L. Global stability for a mathematical model of hepatitis C: Impact of a possible vaccination with DAAs therapy. AIP Conf. Proc. 2019, 2159, 030020. [Google Scholar]
- Arnolfo, P.; Marigliano, S.; Giovanna, L.; Anna, C.; Carmela, C. Global epidemiology of hepatitis C virus infection: An up-date of the distribution and circulation of hepatitis C virus genotypes. World J. Gastroenterol. 2016, 22, 7824. [Google Scholar]
- Tang, L.S.Y.; Covert, E.; Wilson, E.; Kottilil, S. Chronic Hepatitis B Infection: A Review. JAMA 2018, 319, 1802–1813. [Google Scholar] [CrossRef]
- Long, C.; Qi, H.; Huang, S.H. Mathematical modeling of cytotoxic lymphocyte-mediated immune response to hepatitis B virus infection. J. Biomed. Biotechnol. 2008, 2008, 743690. [Google Scholar] [CrossRef] [Green Version]
- Poh, Z.; Goh, B.B.; Chang, P.E.; Tan, C.K. Rates of cirrhosis and hepatocellular carcinoma in chronic hepatitis B and the role of surveillance: A 10-year follow-up of 673 patients. Eur. J. Gastroenterol. Hepatol. 2015, 27, 638–643. [Google Scholar] [CrossRef] [Green Version]
- Parkin, D.M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer 2006, 118, 3030–3044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goossens, N.; Clement, S.; Negro, F. Handbook of Hepatitis C; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Whitford, K.; Liu, B.; Micallef, J.; Yin, J.K.; Macartney, K.; Damme, P.V.; Kaldor, J.M. Long-term impact of infant immunization on hepatitis B prevalence: A systematic review and meta-analysis. Bull. World Health Organ. 2018, 96, 484–497. [Google Scholar] [CrossRef]
- Posuwan, N.; Vorayingyong, A.; Jaroonvanichkul, V.; Wasitthankasem, R.; Wanlapakorn, N.; Vongpunsawad, S.; Poovorawan, Y. Implementation of hepatitis B vaccine in high-risk young adults with waning immunity. PLoS ONE 2018, 13, e0202637. [Google Scholar] [CrossRef] [Green Version]
- McMahon, B.J.; Dentinger, C.M.; Bruden, D.; Zanis, C.; Peters, H.; Hurlburt, D.; Bulkow, L.; Fiore, A.E.; Bell, B.P.; Hennessy, T.W. Antibody levels and protection after hepatitis B vaccine: Results of a 22-year follow-up study and response to a booster dose. J. Infect Dis. 2009, 200, 1390–1396. [Google Scholar] [CrossRef] [Green Version]
- Liang, T.J.; Hepatitis, B. The virus and disease. Hepatology 2009, 49 (Suppl. 5), S13–S21. [Google Scholar] [CrossRef] [Green Version]
- European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef] [Green Version]
- Bunimovich-Mendrazitsky, S.; Goltser, Y. Use of quasi-normal form to examine stability of tumor-free equilibrium in a mathematical model of BCG treatment of bladder cancer. Math. Biosci. Eng. 2011, 8, 529–547. [Google Scholar] [CrossRef]
- Nicoletti, F.; Zaccone, P.; Xiang, M.; Magro, G.; Di Mauro, M.; Di Marco, R.; Garotta, G.; Meroni, P. Essential pathogenetic role for interferon (IFN-)gamma in concanavalin A-induced T cell-dependent hepatitis: Exacerbation by exogenous IFN-gamma and prevention by IFN-gamma receptor-immunoglobulin fusion protein. Cytokine 2000, 12, 315–323. [Google Scholar] [CrossRef]
- Rijckborst, V.; Janssen, H.L. The Role of Interferon in Hepatitis B Therapy. Curr. Hepat. Rep. 2010, 9, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Tenney, D.J.; Rose, R.E.; Baldick, C.J.; Pokornowski, K.A.; Eggers, B.J.; Fang, J.; Wichroski, M.J.; Xu, D.; Yang, J.; Wilber, R.B.; et al. Long-term monitoring shows hepatitis B virus resistance to entecavir in nucleoside-naïve patients is rare through 5 years of therapy. Hepatology 2009, 49, 1503–1514. [Google Scholar] [CrossRef]
- Buster, E.H.; Flink, H.J.; Cakaloglu, Y.; Simon, K.; Trojan, J.; Tabak, F.; So, T.M.; Feinman, S.V.; Mach, T.; Akarca, U.S.; et al. Sustained HBeAg and HBsAg loss after long-term follow-up of HBeAg-positive patients treated with peginterferon alpha-2b. Gastroenterology 2008, 135, 459–467. [Google Scholar] [CrossRef]
- Marcellin, P.; Lau, G.K.; Bonino, F.; Farci, P.; Hadziyannis, S.; Jin, R.; Lu, Z.M.; Piratvisuth, T.; Germanidis, G.; Yurdaydin, C.; et al. Peginterferon Alfa-2a HBeAg-Negative Chronic Hepatitis B Study Group. Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B. N Engl. J. Med. 2004, 351, 1206–1217. [Google Scholar] [CrossRef] [Green Version]
- Buti, M.; Tsai, N.; Petersen, J.; Flisiak, R.; Gurel, S.; Krastev, Z.; Schall, R.A.; Flaherty, J.F.; Martins, E.B.; Charuworn, P.; et al. Seven-year efficacy and safety of treatment with tenofovir disoproxil fumarate for chronic hepatitis B virus infection. Dig. Dis. Sci. 2015, 60, 1457–1464. [Google Scholar] [CrossRef] [Green Version]
- Monsalve-De Castillo, F.; Romero, T.A.; Estévez, J.; Costa, L.L.; Atencio, R.; Porto, L.; Callejas, D. Concentrations of cytokines, soluble interleukin-2 receptor, and soluble CD30 in sera of patients with hepatitis B virus infection during acute and convalescent phases. Clin. Diagn. Lab. Immunol. 2002, 9, 1372–1375. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, D.; Gao, J.; Li, W.X.; Zhu, J.Y. Cyclosporine combined with nonlytic interleukin 2/Fc fusion protein improves immune response to hepatitis B vaccination in a mouse skin transplantation model. Transplant Proc. 2013, 45, 2559–2564. [Google Scholar] [CrossRef]
- Wu, D.; Wang, P.; Han, M.; Chen, Y.; Chen, X.; Xia, Q.; Yan, W.; Wan, X.; Zhu, C.; Xie, Q.; et al. Sequential combination therapy with interferon, interleukin-2 and therapeutic vaccine in entecavir-suppressed chronic hepatitis B patients: The Endeavor study. Hepatol. Int. 2019, 13, 573–586. [Google Scholar] [CrossRef]
- Szabó, E.; Páska, C.; Novák, P.K.; Schaff, Z.; Kiss, A. Similarities and differences in hepatitis B and C virus induced hepatocarcinogenesis. Pathol. Oncol. Res. 2004, 10, 5–11. [Google Scholar] [CrossRef]
- Domoshnitsky, A.; Volinsky, I.; Polonsky, A.; Sitkin, A. Stabilization by delay distributed feedback control. Math. Model. Nat. Phenom. 2017, 12, 91–105. [Google Scholar] [CrossRef]
- Domoshnitsky, A.; Volinsky, I.; Polonsky, A. Stabilization of third order differential equation by delay distributed feedback control with unbounded memory. Math. Slovaca 2019, 69, 1165–1176. [Google Scholar] [CrossRef]
- Domoshnitsky, A.; Volinsky, I.; Bershadsky, M. Around the Model of Infection Disease: The Cauchy Matrix and Its Properties. Symmetry 2019, 11, 1016. [Google Scholar] [CrossRef] [Green Version]
- Bershadsky, M.; Chirkov, M.; Domoshnitsky, A.; Rusakov, S.; Volinsky, I. Distributed Control and the Lyapunov Characteristic Exponents in the Model of Infectious Diseases. Complexity 2019, 2019, 5234854. [Google Scholar] [CrossRef]
- Domoshnitsky, A.; Volinsky, I.; Levi, S.; Shemesh, S. Stability of third order neutral delay differential equations. AIP Conf. Proc. 2019, 2159, 020002. [Google Scholar] [CrossRef]
- Domoshnitsky, A.; Volinsky, I.; Pinhasov, O.; Bershadsky, M. Questions of Stability of Functional Differential Systems around the Model of Testosterone Regulation. Bound. Value Probl. 2019, 1, 1–13. [Google Scholar] [CrossRef]
- Domoshnitsky, A.; Volinsky, I.; Pinhasov, O. Some developments in the model of testosterone regulation. AIP Conf. Proc. 2019, 2159, 030010. [Google Scholar] [CrossRef]
- Nowak, M.A.; Bonhoeffer, S.; Hill, A.M.; Boehme, R.; Thomas, H.C.; McDade, H. Viral dynamics in hepatitis B virus infection. Proc. Natl. Acad. Sci. USA 1996, 93, 4398–4402. [Google Scholar] [CrossRef] [Green Version]
- Domoshnitsky, A.; Volinsky, I.; Polonsky, A.; Sitkin, A. Practical constructing the Cauchy function of integro-differential equation. Funct. Differ. Equ. 2016, 23, 109–118. [Google Scholar]
- Agarwal, R.P.; Berezansky, L.; Braverman, E.; Domoshnitsky, A. Nonoscillation Theory of Functional Differential Equations with Applications; Springer: New York, NY, USA, 2012. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volinsky, I.; Lombardo, S.D.; Cheredman, P. Stability Analysis and Cauchy Matrix of a Mathematical Model of Hepatitis B Virus with Control on Immune System near Neighborhood of Equilibrium Free Point. Symmetry 2021, 13, 166. https://doi.org/10.3390/sym13020166
Volinsky I, Lombardo SD, Cheredman P. Stability Analysis and Cauchy Matrix of a Mathematical Model of Hepatitis B Virus with Control on Immune System near Neighborhood of Equilibrium Free Point. Symmetry. 2021; 13(2):166. https://doi.org/10.3390/sym13020166
Chicago/Turabian StyleVolinsky, Irina, Salvo Danilo Lombardo, and Paz Cheredman. 2021. "Stability Analysis and Cauchy Matrix of a Mathematical Model of Hepatitis B Virus with Control on Immune System near Neighborhood of Equilibrium Free Point" Symmetry 13, no. 2: 166. https://doi.org/10.3390/sym13020166
APA StyleVolinsky, I., Lombardo, S. D., & Cheredman, P. (2021). Stability Analysis and Cauchy Matrix of a Mathematical Model of Hepatitis B Virus with Control on Immune System near Neighborhood of Equilibrium Free Point. Symmetry, 13(2), 166. https://doi.org/10.3390/sym13020166