Stabilization of Periodical Discrete Feedback Control for Markov Jumping Stochastic Systems
Abstract
:1. Introduction
2. Problem Description and Main Results
3. Proof of Main Results
4. Illustrated Application of Stochastic Neural Networks
5. Conclusions
6. Further Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q. Stock trading: An optimal selling rule. Siam J. Control Optim. 2001, 40, 64–87. [Google Scholar] [CrossRef]
- Mariton, M. Jump Linear Systems in Automatic Control; Marcel Dekker: New York, NY, USA, 1990. [Google Scholar]
- Skorokhod, A.V. Asymptotic Methods in the Theory of Stochastic Differential Equations; American Mathematical Society: Providence, RI, USA, 1989. [Google Scholar]
- Shaikhet, L. Stability of stochastic hereditary systems with Markov switching. Theory Stoch. Process. 1996, 2, 180–184. [Google Scholar]
- Mao, X. Stability of stochastic differential equations with Markovian switching. Stoch. Process. Their Appl. 1999, 79, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Yuan, C. Stochastic Differential Equations with Markovian Switching; Imperial College Press: London, UK, 2006. [Google Scholar]
- Teel, A.R.; Subbaraman, A.; Sferlazza, A. Stability analysis for stochastic hybrid systems: A survey. Automatica 2014, 50, 2435–2456. [Google Scholar] [CrossRef]
- Li, B. A note on stability of hybrid stochastic differential equations. Appl. Math. Comput. 2017, 299, 45–57. [Google Scholar] [CrossRef]
- Feng, L.; Cao, J.; Liu, L.; Alsaedi, A. Asymptotic stability of nonlinear hybrid stochastic systems driven by linear discrete time noises. Nonlinear Anal. Hybrid Syst. 2019, 33, 336–352. [Google Scholar] [CrossRef]
- Feng, L.; Wu, Z.; Cao, J.; Zheng, S.; Alsaadi, F.E. Exponential stability for nonlinear hybrid stochastic systems with time varying delays of neutral type. Appl. Math. Lett. 2020, 107, 106468. [Google Scholar] [CrossRef]
- Luo, S.; Deng, F.; Zhang, B.; Hu, Z. Almost sure stability of hybrid stochastic systems under asynchronous Markovian switching. Syst. Control Lett. 2019, 133, 104556. [Google Scholar] [CrossRef]
- Mao, X.; Yin, G.; Yuan, C. Stabilization and destabilization of hybrid systems of stochastic differential equations. Automatica 2007, 43, 264–273. [Google Scholar] [CrossRef]
- Liu, L.; Shen, Y. Noise suppresses explosive solutions of differential systems with coefficients satisfying the polynomial growth condition. Automatica 2012, 48, 619–624. [Google Scholar] [CrossRef]
- Deng, F.; Luo, Q.; Mao, X. Stochastic stabilization of hybrid differential equations. Automatica 2012, 48, 2321–2328. [Google Scholar] [CrossRef]
- Mao, X. Almost sure exponential stabilization by discrete-time stochastic feedback control. IEEE Trans. Autom. Control 2016, 61, 1619–1624. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Li, S.; Song, R.; Li, Y. Suppression of explosion by polynomial noise for nonlinear differential systems. Sci. China Inf. Sci. 2018, 61, 136–146. [Google Scholar] [CrossRef]
- Mao, X. Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control. Automatica 2013, 49, 3677–3681. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Liu, W.; Hu, L.; Luo, Q.; Lu, J. Stabilization of hybrid stochastic differential equations by feedback control based on discrete time state observations. Syst. Control Lett. 2014, 73, 88–95. [Google Scholar] [CrossRef] [Green Version]
- You, S.; Liu, W.; Lu, J. Stabilization of hybrid systems by feedback control based on discrete-time state observations. SIAM J. Control Optim. 2015, 53, 905–925. [Google Scholar] [CrossRef] [Green Version]
- Fei, C.; Fei, W.; Mao, X.; Xia, D.; Yan, L. Stabilization of highly nonlinear hybrid systems by feedback control based on discrete-time state observations. IEEE Trans. Autom. Control 2020, 65, 2899–2912. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Liu, Q.; Cao, J.; Zhang, C.; Alsaadi, F. Stabilization in general decay rate of discrete feedback control for non-autonomous Markov jump stochastic systems. Appl. Math. Comput. 2022, 417, 126771. [Google Scholar] [CrossRef]
- Zochowski, M. Intermittent dynamical control. Phys. D 2000, 145, 181–190. [Google Scholar] [CrossRef]
- Li, C.; Gang, F.; Liao, X. Stabilization of nonlinear systems via periodically intermittent control. IEEE Trans. Circuits Syst. Express Briefs 2007, 54, 1019–1023. [Google Scholar]
- Xia, W.; Cao, J. Pinning synchronization of delayed dynamical networks via periodically intermittent control. Chaos 2009, 19, 013120. [Google Scholar] [CrossRef]
- Yang, X.; Cao, J. Stochastic synchronization of coupled neural networks with intermittent control. Phys. Lett. A 2009, 373, 3259–3272. [Google Scholar] [CrossRef]
- Yang, S.; Li, C.; Huang, T. Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control. Neural Netw. 2016, 75, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhong, J.; Zheng, W. Delay-independent stabilization of a class of time-delay systems via periodically intermittent control. Automatica 2016, 71, 89–97. [Google Scholar] [CrossRef]
- Wang, P.; Hong, Y.; Su, H. Stabilization of stochastic complex-valued coupled delayed systems with Markovian switching via periodically intermittent control. Nonlinear Anal. Hybrid Syst. 2018, 29, 395–413. [Google Scholar] [CrossRef]
- Guo, B.; Wu, Y.; Xiao, Y.; Zhang, C. Graph-theoretic approach to synchronizing stochastic coupled systems with time-varying delays on networks via periodically intermittent control. Appl. Math. Comput. 2018, 331, 341–357. [Google Scholar] [CrossRef]
- Cao, J.; Rakkiyappan, R.; Maheswari, K. Exponential H∞ filtering analysis for discrete-time switched neural networks with random delays using sojourn probabilities. Sci. China Technol. Sci. 2016, 59, 387–402. [Google Scholar] [CrossRef]
- Liu, L.; Cao, J.; Qian, C. pth moment exponential input-to-state stability of delayed recurrent neural networks with Markovian switching via vector Lyapunov function. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 3152–3163. [Google Scholar] [CrossRef]
- Shen, H.; Zhu, Y.; Zhang, L.; Park, J.H. Extended dissipative state estimation for Markov jump neural networks with unreliable links. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 346–358. [Google Scholar] [CrossRef]
- Cheng, J.; Park, J.H.; Karimi, H.R.; Shen, H. A flexible terminal approach to sampled-data exponentially synchronization of Markovian neural networks with time-varying delayed signals. IEEE Trans. Cybern. 2018, 48, 2232–2244. [Google Scholar]
- Hu, S.; Liao, X.; Mao, X. Stochastic Hopfield neural networks. J. Phys. A Math. Gen. 2003, 36, 2235–2249. [Google Scholar] [CrossRef]
- Zhou, Q.; Wan, L. Exponential stability of stochastic delayed Hopfield neural networks. Appl. Math. Comput. 2008, 199, 84–89. [Google Scholar] [CrossRef]
- Zhu, Q.; Cao, J. Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays. IEEE Trans. Syst. Man Cybern. Part B 2011, 41, 341–353. [Google Scholar]
- Wan, L.; Zhou, Q.; Wang, P. Ultimate boundedness and an attractor for stochastic Hopfield neural networks with time-varying delays. Nonlinear Anal. Real World Appl. 2012, 13, 953–958. [Google Scholar] [CrossRef]
- Zhu, S.; Shen, Y.; Chen, G. Noise suppress exponential growth for hybrid Hopfield neural networks. Math. Comput. Simul. 2012, 86, 10–20. [Google Scholar] [CrossRef]
- Feng, L.; Cao, J.; Liu, L. Stability analysis in a class of Markov switched stochastic Hopfield neural networks. Neural Process. Lett. 2019, 50, 413–430. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Feng, L.; Li, X.; Lu, Z.; Meng, X. Stabilization of Periodical Discrete Feedback Control for Markov Jumping Stochastic Systems. Symmetry 2021, 13, 2447. https://doi.org/10.3390/sym13122447
Liu Z, Feng L, Li X, Lu Z, Meng X. Stabilization of Periodical Discrete Feedback Control for Markov Jumping Stochastic Systems. Symmetry. 2021; 13(12):2447. https://doi.org/10.3390/sym13122447
Chicago/Turabian StyleLiu, Zhiyou, Lichao Feng, Xinbin Li, Zhigang Lu, and Xianhui Meng. 2021. "Stabilization of Periodical Discrete Feedback Control for Markov Jumping Stochastic Systems" Symmetry 13, no. 12: 2447. https://doi.org/10.3390/sym13122447
APA StyleLiu, Z., Feng, L., Li, X., Lu, Z., & Meng, X. (2021). Stabilization of Periodical Discrete Feedback Control for Markov Jumping Stochastic Systems. Symmetry, 13(12), 2447. https://doi.org/10.3390/sym13122447