# The Λ and the CDM as Integration Constants

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Dark Matter

## 3. Cosmological Constant

## 4. Conclusions

- The 1st $\mathsf{\Lambda}$ problem, the sensitivity of gravity to vacuum energy, is resolved [7].
- The 2nd $\mathsf{\Lambda}$ problem, the observed value of $\mathsf{\Lambda}$, could be related to the age of the Universe (The question of why the $\rho $ is small seems like the same question as why the universe is so old. The association of large numbers in physics with the age of the universe goes back, via Dirac, to Weyl. Recently, it was pointed out that Dirac’s large number hypothesis might be realised in a model with two “dilatons” [5]. However, in this essay, we only discussed the cosmological numbers related to the $\mathsf{\Lambda}$ and the CDM.).
- The 3rd $\mathsf{\Lambda}$ problem, the coincidence that $\mathsf{\Lambda}\sim \rho $, may have a rationale in their dual origin.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Acknowledgments

## Conflicts of Interest

## References

- Utiyama, R. Invariant theoretical interpretation of interaction. Phys. Rev.
**1956**, 101, 1597–1607. [Google Scholar] [CrossRef] - Kibble, T.W.B. Lorentz invariance and the gravitational field. J. Math. Phys.
**1961**, 2, 212–221. [Google Scholar] [CrossRef][Green Version] - Złośnik, T.; Urban, F.; Marzola, L.; Koivisto, T. Spacetime and dark matter from spontaneous breaking of Lorentz symmetry. Class. Quant. Grav.
**2018**, 35, 235003. [Google Scholar] [CrossRef][Green Version] - Gielen, S.; Wise, D.K. Lifting General Relativity to Observer Space. J. Math. Phys.
**2013**, 54, 052501. [Google Scholar] [CrossRef][Green Version] - Koivisto, T.; Zheng, L. Scale-invariant cosmology in de Sitter gauge theory. arXiv
**2021**, arXiv:2101.07638. [Google Scholar] - Henneaux, M.; Teitelboim, C. The Cosmological Constant and General Covariance. Phys. Lett. B
**1989**, 222, 195–199. [Google Scholar] [CrossRef] - Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys.
**1989**, 61, 1–23. [Google Scholar] [CrossRef] - Koivisto, T.; Hohmann, M.; Złośnik, T. The General Linear Cartan Khronon. Universe
**2019**, 5, 168. [Google Scholar] [CrossRef][Green Version] - Złośnik, T.G.; Westman, H.F. A first-order approach to conformal gravity. Class. Quant. Grav.
**2017**, 34, 245001. [Google Scholar] [CrossRef][Green Version] - Aghanim, N. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys.
**2020**, 641, A6. [Google Scholar] [CrossRef][Green Version] - Wetterich, C. Spontaneous symmetry breaking origin for the difference between time and space. Phys. Rev. Lett.
**2005**, 94, 011602. [Google Scholar] [CrossRef][Green Version] - Wetterich, C. Pregeometry and spontaneous time-space asymmetry. arXiv
**2021**, arXiv:2101.11519. [Google Scholar] - Benisty, D.; Guendelman, E.I. Unified dark energy and dark matter from dynamical spacetime. Phys. Rev. D
**2018**, 98, 023506. [Google Scholar] [CrossRef][Green Version] - Jiroušek, P.; Shimada, K.; Vikman, A.; Yamaguchi, M. Losing the trace to find dynamical Newton or Planck constants. JCAP
**2021**, 4, 028. [Google Scholar] [CrossRef] - Konitopoulos, S.; Saridakis, E.N.; Stavrinos, P.C.; Triantafyllopoulos, A. Dark Gravitational Sectors on a Generalized Scalar-Tensor Vector Bundle Model and Cosmological Applications. arXiv
**2021**, arXiv:2104.08024. [Google Scholar] - Nesti, F.; Percacci, R. Graviweak Unification. J. Phys. A
**2008**, 41, 075405. [Google Scholar] [CrossRef] - Bojowald, M. Non-covariance of “covariant polymerization” in models of loop quantum gravity. arXiv
**2021**, arXiv:2102.11130. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gallagher, P.; Koivisto, T. The Λ and the CDM as Integration Constants. *Symmetry* **2021**, *13*, 2076.
https://doi.org/10.3390/sym13112076

**AMA Style**

Gallagher P, Koivisto T. The Λ and the CDM as Integration Constants. *Symmetry*. 2021; 13(11):2076.
https://doi.org/10.3390/sym13112076

**Chicago/Turabian Style**

Gallagher, Priidik, and Tomi Koivisto. 2021. "The Λ and the CDM as Integration Constants" *Symmetry* 13, no. 11: 2076.
https://doi.org/10.3390/sym13112076