Note on the Hurwitz–Lerch Zeta Function of Two Variables
Abstract
:1. Introduction and Preliminaries
2. Integral Representations for the Extended Hurwitz–Lerch Zeta Function of Two Variables
3. Generating Functions for the Extended Hurwitz–Lerch Zeta Function of Two Variables
4. Derivative Formulas for the Extended Hurwitz–Lerch Zeta Function of Two Variables
5. Recurrence Relations for the Extended Hurwitz–Lerch Zeta Function of Two Variables
6. Symmetries and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, 4th ed.; Cambridge University Press: Cambridge, UK, 1963. [Google Scholar]
- Apostol, T.M. Remark on the Hurwitz zeta function. Proc. Amer. Math. Soc. 1951, 5, 690–693. [Google Scholar] [CrossRef]
- Berndt, B.C. On the Hurwitz zeta-function. Rocky Mountain J. Math. 1972, 2, 151–158. [Google Scholar] [CrossRef]
- Adamchik, V.S.; Srivastava, H.M. Some series of the zeta and related functions. Analysis 1998, 2, 131–144. [Google Scholar] [CrossRef]
- Rassias, M.T.; Yang, B. On an equivalent property of a reverse Hilbert-type integral inequality related to the extended Hurwitz-zeta function. J. Math. Inequal. 2019, 13, 315–334. [Google Scholar] [CrossRef] [Green Version]
- Rassias, M.T.; Yang, B. On a Hilbert-type integral inequality related to the extended Hurwitz zeta function in the whole plane. Acta Appl. Math. 2019, 160, 67–80. [Google Scholar] [CrossRef]
- Rassias, M.T.; Yang, B.; Raigorodskii, A. On a half-discrete Hilbert-type inequality in the whole plane with the kernel of hyperbolic secant function related to the Hurwitz zeta function. J. Inequal. Appl. 2020, 2020, 94. [Google Scholar] [CrossRef]
- Rassias, M.T.; Yang, B.; Raigorodskii, A. On Hardy-type integral inequalities in the whole plane related to the extended Hurwitz-zeta function. In Trigonometric Sums and their Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 229–259. [Google Scholar]
- Choi, J.; Jang, D.S.; Srivastava, H.M. A generalization of the Hurwitz–Lerch Zeta function. Integral Transform. Spec. Funct. 2008, 19, 65–79. [Google Scholar]
- Daman, O.; Pathan, M.A. A further generalization of the Hurwitz Zeta function. Math. Sci. Res. J. 2012, 16, 251–259. [Google Scholar]
- Garg, M.; Jain, K.; Kalla, S.L. A further study of general Hurwitz–Lerch zeta function. Algebras Groups Geom. 2008, 25, 311–319. [Google Scholar]
- Goyal, S.P.; Laddha, R.K. On the generalized Zeta function and the generalized Lambert function. Ganita Sandesh 1997, 11, 99–108. [Google Scholar]
- Pathan, M.A.; Daman, O. On generalization of Hurwitz zeta function. Non-Linear World J. 2018. submitted. [Google Scholar]
- Lin, S.D.; Srivastava, H.M. Some families of the Hurwitz–Lerch Zeta functions and associated fractional derivative and other integral representations. Appl. Math. Comput. 2004, 154, 725–733. [Google Scholar] [CrossRef]
- Srivastava, H.M. A new family of the generalized Hurwitz–Lerch Zeta functions with applications. Appl. Math. Inf. Sci. 2014, 8, 1485–1500. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Jankov, D.; Pogány, T.K.; Saxena, R.K. Two-sided inequalities for the extended Hurwitz–Lerch Zeta function. Comput. Math. Appl. 2011, 62, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Luo, M.-J.; Raina, R.K. New results involving a class of generalized Hurwitz–Lerch Zeta functions and their applications. Turkish J. Anal. Number Theory 2013, 1, 26–35. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saxena, R.K.; Pogány, T.K.; Saxena, R. Integral and computational representations of the extended Hurwitz–Lerch Zeta function. Integral Transforms Spec. Funct. 2011, 22, 487–506. [Google Scholar] [CrossRef]
- Choi, J.; Parmar, R.K. An extension of the generalized Hurwitz–Lerch zeta function of two variables. Filomat 2017, 31, 91–96. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Ellis Horwood Limited: Chichester, UK, 1985. [Google Scholar]
- Srivastava, H.M. Certain formulas involving Appell functions. Rikkyo Daigaku Sugaku Zasshi 1972, 21, 73–99. [Google Scholar]
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press: Cambridge, UK, 1935; Volume 32. [Google Scholar]
- Milovanović, G.V.; Rassias, M.T. Some properties of a hypergeometric function which appear in an approximation problem. J. Glob. Optim. 2013, 57, 1173–1192. [Google Scholar] [CrossRef]
- Slater, L.J. Confluent Hypergeometric Functions; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1960. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Ellis Horwood Limited: Chichester, UK, 1984. [Google Scholar]
- Choi, J.; Hasanov, A. Applications of the operator H(α,β) to the Humbert double hypergeometric functions. Comput. Math. Appl. 2011, 61, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Brychkov, Y.A.; Saad, N. Some formulas for the Appell function F1(a,b,b′;c;w,z). Integral Transforms Spec. Funct. 23 2012, 11, 793–802. [Google Scholar] [CrossRef]
- Choi, J.; Agarwal, P. Certain generating functions involving Appell series. Far East J. Math. Sci. 2014, 84, 25–32. [Google Scholar]
- Wang, X. Recursion formulas for Appell functions. Integral Transforms Spec. Funct. 2012, 23, 421–433. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Şahin, R.; Yağcı, O.; Kim, D. Note on the Hurwitz–Lerch Zeta Function of Two Variables. Symmetry 2020, 12, 1431. https://doi.org/10.3390/sym12091431
Choi J, Şahin R, Yağcı O, Kim D. Note on the Hurwitz–Lerch Zeta Function of Two Variables. Symmetry. 2020; 12(9):1431. https://doi.org/10.3390/sym12091431
Chicago/Turabian StyleChoi, Junesang, Recep Şahin, Oğuz Yağcı, and Dojin Kim. 2020. "Note on the Hurwitz–Lerch Zeta Function of Two Variables" Symmetry 12, no. 9: 1431. https://doi.org/10.3390/sym12091431
APA StyleChoi, J., Şahin, R., Yağcı, O., & Kim, D. (2020). Note on the Hurwitz–Lerch Zeta Function of Two Variables. Symmetry, 12(9), 1431. https://doi.org/10.3390/sym12091431