# Rotating Melvin-like Universes and Wormholes in General Relativity

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Basic Relations

## 3. Solutions with A Perfect Fluid and A Magnetic Field

#### 3.1. The Electromagnetic Field. A No-Go Theorem

**No-go theorem.**It can be shown that a free longitudinal magnetic field is incompatible with a nonstatic ($\omega \ne 0$) metric (1). This follows from solving the Maxwell equations, which, for ${F}^{\mu \nu}$ of the form (16) read

#### 3.2. The Fluid

#### 3.3. Solution of the Einstein Equations

## 4. Melvin-Like Universes

## 5. Wormholes

## 6. Concluding Remarks

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Stephani, H.; Kramer, D.; MacCallum, M.A.H.; Hoenselaers, C.; Herlt, E. Exact solutions of Einstein’s field equations. In Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Griffiths, J.B.; Podolsky, J. Exact Space-Times in Einstein’s General Relativity; Cambride University Press: Cambridge, UK, 2009. [Google Scholar]
- Bronnikov, K.A.; Santos, N.O.; Wang, A. Cylindrical systems in general relativity. Class. Quantum Gravity
**2020**, 37, 113002. [Google Scholar] [CrossRef] [Green Version] - Birch, P. Is the Universe Rotating? Nature
**1982**, 298, 451–454. [Google Scholar] [CrossRef] - Panov, V.F.; Pavelkin, V.N.; Kuvshinova, E.V.; Sandakova, O.V. Cosmology with Rotation; Perm University Press: Perm, Russia, 2016. [Google Scholar]
- Sandakova, O.V.; Yanishevsky, D.M.; Panov, V.F. A cosmological scenario with rotation. Grav. Cosmol.
**2019**, 25, 362. [Google Scholar] [CrossRef] - Land, K.; Magueijo, J. The axis of evil. Phys. Rev. Lett.
**2005**, 95, 071301. [Google Scholar] [CrossRef] - Longo, M.J. Detection of a dipole in the handedness of spiral galaxies with redshifts z ∼ 0.04. Phys. Lett. B
**2011**, 699, 224–229. [Google Scholar] [CrossRef] [Green Version] - Poltis, R.; Stojkovic, D. Can primordial magnetic fields seeded by electroweak strings cause an alignment of quasar axes on cosmological scales? Phys. Rev. Lett.
**2010**, 105, 161301. [Google Scholar] [CrossRef] [Green Version] - Yamazaki, D.G.; Kajino, T.; Mathews, G.J.; Ichiki, K. The search for a primordial magnetic field. Phys. Rep.
**2012**, 517, 141–167. [Google Scholar] [CrossRef] [Green Version] - Di Gioia, F.; Montani, G. Linear perturbations of an anisotropic Bianchi I model with a uniform magnetic field. Eur. Phys. J. C
**2019**, 79, 921. [Google Scholar] [CrossRef] - Bolokhov, S.V.; Bronnikov, K.A.; Skvortsova, M.V. Magnetic black universes and wormholes with a phantom scalar. Class. Quantum Grav.
**2012**, 29, 245006. [Google Scholar] [CrossRef] [Green Version] - Melvin, M.A. Pure magnetic and electric geons. Phys. Lett.
**1964**, 8, 65–68. [Google Scholar] [CrossRef] - Bronnikov, K.A. Static, cylindrically symmetric Einstein–Maxwell fields. In Problems in Gravitation Theory and Particle Theory (PGTPT); 10th issue; Staniukovich, K.P., Ed.; Atomizdat: Moscow, Russia, 1979; pp. 37–50. [Google Scholar]
- Bronnikov, K.A. Inverted black holes and anisotropic collapse. Soviet Phys. J.
**1979**, 22, 594–600. [Google Scholar] [CrossRef] - Lanczos, C. Ueber eine stationäre Kosmologie in Sinne der Einsteinischen Gravitationstheories. Z. Physik
**1924**, 21, 73. [Google Scholar] [CrossRef] - Lewis, T. Some special solutions of the equations of axially symmetric gravitational fields. Proc. R. Soc. A
**1932**, 136, 176. [Google Scholar] - Santos, N.O. Solution of the vacuum Einstein equations with nonzero cosmological constant for a stationary cylindrically symmetric spacetime. Class. Quantum Grav.
**1993**, 10, 2401. [Google Scholar] [CrossRef] - Krasinski, A. Solutions of the Einstein field equations for a rotating perfect fluid II: Properties of the flow-stationary and and vortex-homogeneous solutions. Acta Phys. Pol.
**1975**, 6, 223. [Google Scholar] - MacCallum, M.A.H.; Santos, N.O. Stationary and static cylindrically symmetric Einstein spaces of the Lewis form. Class. Quantum Grav.
**1998**, 15, 1627. [Google Scholar] [CrossRef] [Green Version] - Bronnikov, K.A.; Krechet, V.G.; Lemos, P.S. Rotating cylindrical wormholes. Phys. Rev. D
**2013**, 87, 084060. [Google Scholar] [CrossRef] [Green Version] - Bronnikov, K.A.; Krechet, V.G. Rotating cylindrical wormholes and energy conditions. Int. J. Mod. Phys. A
**2016**, 31, 1641022. [Google Scholar] [CrossRef] [Green Version] - Erices, C.; Martinez, C. Stationary cylindrically symmetric spacetimes with a massless scalar field and a nonpositive cosmological constant. Phys. Rev. D
**2015**, 92, 044051. [Google Scholar] [CrossRef] [Green Version] - Van Stockum, W.J. The gravitational field of a distribution of particles rotating about an axis of symmetry. Proc. R. Soc. Edinburgh A
**1937**, 57, 135. [Google Scholar] [CrossRef] - Bonnor, W.B.; Steadman, B.R. A vacuum exterior to Maitra’s cylindrical dust solution. Gen. Rel. Grav.
**2009**, 41, 1381. [Google Scholar] [CrossRef] - Ivanov, B.V. The General Double-dust Solution. arXiv
**2002**, arXiv:gr-qc/0209032. [Google Scholar] - Ivanov, B.V. Rigidly rotating cylinders of charged dust. Class. Quantum Gravity
**2002**, 19, 5131. [Google Scholar] [CrossRef] [Green Version] - Santos, N.O.; Mondaini, R.P. Rigidly rotating relativistic generalized dust cylinder. Nuovo Cim. B.
**1982**, 72, 13. [Google Scholar] [CrossRef] - Hoenselaers, C.; Vishveshwara, C.V. A relativistically rotating fluid cylinder. Nuovo Cim. B
**1979**, 10, 43–51. [Google Scholar] [CrossRef] - Davidson, W. Barotropic perfect fluid in steady cylindrically symmetric rotation. Class. Quantum Gravity
**1997**, 14, 119. [Google Scholar] [CrossRef] - Davidson, W. A cylindrically symmetric stationary solution of Einstein’s equations describing a perfect fluid of finite radius. Class. Quantum Gravity
**2000**, 17, 2499. [Google Scholar] [CrossRef] - Sklavenites, D. Stationary perfect fluid cylinders. Class. Quantum Gravity
**1999**, 16, 2753. [Google Scholar] [CrossRef] - Ivanov, B.V. On rigidly rotating perfect fluid cylinders. Class. Quantum Gravity
**2002**, 19, 3851. [Google Scholar] [CrossRef] [Green Version] - Letelier, P.S.; Verdaguer, E. Anisotropic fluid with SU(2) type structure in general relativity: A model of localized matter. Int. Math. Phys.
**1987**, 28, 2431. [Google Scholar] [CrossRef] [Green Version] - Herrera, L.; Denmat, G.L.; Marcilhacy, G.; Santos, N.O. Static cylindrical symmetry and conformal flatness. Int. J. Mod. Phys. D
**2005**, 14, 657. [Google Scholar] [CrossRef] [Green Version] - Debbasch, F.; Herrera, L.; Pereira, P.R.C.T.; Santos, N.O. Stationary cylindrical anisotropic fluid. Gen. Rel. Grav.
**2006**, 38, 1825. [Google Scholar] [CrossRef] [Green Version] - Bolokhov, S.V.; Bronnikov, K.A.; Skvortsova, M.V. Rotating cylinders with anisotropic fluids in general relativity. Gravit. Cosmol.
**2019**, 25, 122. [Google Scholar] [CrossRef] [Green Version] - Bronnikov, K.A.; Krechet, V.G. Potentially observable cylindrical wormholes without exotic matter in GR. Phys. Rev. D
**2019**, 99, 084051. [Google Scholar] [CrossRef] [Green Version] - Bronnikov, K.A.; Bolokhov, S.V.; Skvortsova, M.V. Cylindrical wormholes: A search for viable phantom-free models in GR. Int. J. Mod. Phys. D
**2019**, 28, 1941008. [Google Scholar] [CrossRef] [Green Version] - Krechet, V.G. Topological and physical effects of rotation and spin in the general relativistic theory of gravitation. Russ. Phys. J.
**2007**, 50, 1021. [Google Scholar] [CrossRef] - Krechet, V.G.; Sadovnikov, D.V. Spin-spin interaction in general relativity and induced geometries with nontrivial topology. Gravit. Cosmol.
**2009**, 15, 337. [Google Scholar] [CrossRef] [Green Version] - Astorino, M. Charging axisymmetric space-times with cosmological constant. J. High Energy Phys.
**2012**, 6, 86. [Google Scholar] [CrossRef] [Green Version] - Bronnikov, K.A.; Rubin, S.G. Black Holes, Cosmology and Extra Dimensions; World Scientific: Singapore, 2013. [Google Scholar]
- Darmois, G. Les équations de la gravitation einsteinienne. In Mémorial des Sciences Mathematiques; Gauthier-Villars: Paris, France, 1927; Volume 25. [Google Scholar]
- Israel, W. Singular hypersurfaces and thin shells in general relativity. Nuovo Cim. B
**1967**, 48, 463. [Google Scholar] [CrossRef] [Green Version] - Berezin, V.A.; Kuzmin, V.A.; Tkachev, I.I. Dynamics of bubbles in general relativity. Phys. Rev. D
**1987**, 36, 2919. [Google Scholar] [CrossRef] - Bronnikov, K.A.; Galiakhmetov, A.M. Wormholes without exotic matter in Einstein-Cartan theory. Gravit. Cosmol.
**2015**, 21, 283. [Google Scholar] [CrossRef] - Bronnikov, K.A.; Galiakhmetov, A.M. Wormholes and black universes without phantom fields in Einstein-Cartan theory. Phys. Rev. D
**2016**, 94, 124006. [Google Scholar] [CrossRef] [Green Version] - Maeda, H.; Nozawa, M. Static and symmetric wormholes respecting energy conditions in Einstein- Gauss-Bonnet gravity. Phys. Rev. D
**2008**, 78, 024005. [Google Scholar] [CrossRef] [Green Version] - Bronnikov, K.A.; Kim, S.-W. Possible wormholes in a brane world. Phys. Rev. D
**2003**, 67, 064027. [Google Scholar] [CrossRef] [Green Version] - Bronnikov, K.A.; Skvortsova, M.V. Wormholes leading to extra dimensions. Grav. Cosmol.
**2016**, 22, 316. [Google Scholar] [CrossRef] [Green Version] - Krechet, V.G.; Oshurko, V.B.; Lodi, M.N. Induced nonlinearities of the scalar field and wormholes in the metric-affine theory of gravity. Grav. Cosmol.
**2018**, 24, 186–190. [Google Scholar] [CrossRef] - Sushkov, S.V.; Korolev, R.V. Scalar wormholes with nonminimal derivative coupling. Class. Quantum Grav.
**2012**, 29, 085008. [Google Scholar] [CrossRef] [Green Version] - Huterer, D.; Vachaspati, T. Gravitational lensing by cosmic strings in the era of wide-field surveys. Phys. Rev. D
**2003**, 68, 041301. [Google Scholar] [CrossRef] [Green Version] - Sazhin, M.V.; Khovanskaya, O.S.; Capaccioli, M.; Longo, G.; Paolillo, M.; Covone, G.; Grogin, N.A.; Schreier, E.J. Gravitational lensing by cosmic strings: What we learn from the CSL-1 case. Mon. Not. R. Astron. Soc.
**2007**, 376, 1731–1739. [Google Scholar] [CrossRef] - Fernández-Núñez, I.; Bulashenko, O. Emergence of Fresnel diffraction zones in gravitational lensing by a cosmic string. Phys. Lett. A
**2017**, 381, 1764–1772. [Google Scholar] [CrossRef] [Green Version] - Bronnikov, K.A. String clouds and radiation flows as sources of gravity in static or rotating cylinders. Int. J. Mod. Phys. A
**2020**, 35, 2040004. [Google Scholar] [CrossRef] [Green Version] - Rubín de Celis, E.; Simeone, C. Electrostatics and self-force in asymptotically flat cylindrical wormholes. Eur. Phys. J. C
**2020**, 80, 501. [Google Scholar] [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bronnikov, K.A.; Krechet, V.G.; Oshurko, V.B.
Rotating Melvin-like Universes and Wormholes in General Relativity. *Symmetry* **2020**, *12*, 1306.
https://doi.org/10.3390/sym12081306

**AMA Style**

Bronnikov KA, Krechet VG, Oshurko VB.
Rotating Melvin-like Universes and Wormholes in General Relativity. *Symmetry*. 2020; 12(8):1306.
https://doi.org/10.3390/sym12081306

**Chicago/Turabian Style**

Bronnikov, Kirill A., Vladimir G. Krechet, and Vadim B. Oshurko.
2020. "Rotating Melvin-like Universes and Wormholes in General Relativity" *Symmetry* 12, no. 8: 1306.
https://doi.org/10.3390/sym12081306