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Abstract: We find a family of exact solutions to the Einstein–Maxwell equations for rotating
cylindrically symmetric distributions of a perfect fluid with the equation of state p = wρ (|w| < 1),
carrying a circular electric current in the angular direction. This current creates a magnetic field along
the z axis. Some of the solutions describe geometries resembling that of Melvin’s static magnetic
universe and contain a regular symmetry axis, while some others (in the case w > 0) describe
traversable wormhole geometries which do not contain a symmetry axis. Unlike Melvin’s solution,
those with rotation and a magnetic field cannot be vacuum and require a current. The wormhole
solutions admit matching with flat-space regions on both sides of the throat, thus forming a cylindrical
wormhole configuration potentially visible for distant observers residing in flat or weakly curved
parts of space. The thin shells, located at junctions between the inner (wormhole) and outer (flat)
regions, consist of matter satisfying the Weak Energy Condition under a proper choice of the free
parameters of the model, which thus forms new examples of phantom-free wormhole models in
general relativity. In the limit w→ 1, the magnetic field tends to zero, and the wormhole model tends
to the one obtained previously, where the source of gravity is stiff matter with the equation of state
p = ρ.
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1. Introduction

Cylindrical symmetry is the second (after the spherical one) simplest space-time symmetry making
it possible to obtain numerous exact solutions in general relativity and its extensions, characterizing
local strong gravitational field configurations. One of the motivations of studying cylindrically
symmetric configurations is the possible existence of such linearly extended structures as cosmic strings
as well as the observed cosmic jets. A large number of static cylindrically symmetric solutions have
been obtained and studied since the advent of general relativity, including vacuum, electrovacuum,
perfect fluid and others, see reviews in [1–3] and references therein.

Important arguments is favor of the studies of cylindrically symmetric and rotating configurations
come from cosmological observations. Thus, for instance, Birch [4] has reported the discovery of
polarization anisotropy in radio signals from extragalactic sources which could be a signature of a
slow rotation of the Universe. This gave rise to the emergence of numerous cosmological models
with rotation, most of which possess cylindrical symmetry; see [5,6] and references therein. There are
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indications of a distinguished direction in the Universe following from an analysis of the Cosmic
Microwave Background [7] and the distribution of left-twirled and right-twirled spiral galaxies on the
celestial sphere [8].

There are also reasons to try to include large-scale magnetic fields into cosmological models.
A possible existence of a global magnetic field up to 10−15 G may be suspected due to the observed
correlated orientations of quasars distant from each other [9]. Various possible manifestations of
primordial magnetic fields are discussed in the literature; see, e.g., [10] for a review. Among numerous
anisotropic cosmologies with a large-scale magnetic field, admitting late-time isotropization, one can
mention Bianchi type I [11] and Kantowski-Sachs models [12], the latter appearing beyond the horizon
of a regular black hole with a radial magnetic field and a phantom scalar field.

Melvin’s famous solution to the Einstein–Maxwell equations, an “electric or magnetic geon” [13],
is a completely regular static, cylindrically symmetric solution with a longitudinal electric or magnetic
field as the only source of gravity. It is a special case from a large set of static cylindrically symmetric
Einstein–Maxwell fields, see more details in [3,14,15].

An important distinguishing feature of cylindrical symmetry as compared to the spherical one is
the possible inclusion of rotation, avoiding complications inherent to the more realistic axial symmetry,
not to mention the general nonsymmetric space-times. Accordingly, a great number of exact stationary
(assuming rotation) solutions to the Einstein equations are known, with various sources of gravity:
the cosmological constant [16–20]; scalar fields with different self-interaction potentials [21–23]; rigidly
or differentially rotating dust [24–26], dust with electric charge [27] or a scalar field [28], fluids with
different equations of state, above all, perfect fluids with p = wρ, w = const (in usual notations) [29–33],
some kinds of anisotropic fluids [34–37] etc., see also references therein and the reviews [1,3].

In this paper we obtain rotating counterparts of the static cylindrically symmetric solutions to the
Einstein–Maxwell equations with a longitudinal magnetic field. It turns out that such a field cannot
exist without a source in the form of an electric current, and we find solutions where such a source
is a perfect fluid with p = wρ. Many features of these solutions are quite different from those of the
static ones, in particular, their common feature is the emergence of closed timelike curves at large
radii. Also, there is a family of wormhole solutions that do not have a symmetry axis but contain a
throat as a minimum of the circular radius. As in our previous studies [21,22,38,39], we try to make
such wormholes potentially observable from spatial infinity by joining outer flat-space regions at
some junction surfaces and verify the validity of the Weak Energy Condition for matter residing on
these surfaces.

The structure of the paper is as follows. Section 2 briefly describes the general formalism.
In Section 3, we find solutions of the field equations. In Section 4, we discuss the properties
of Melvin-like solutions, and in Section 5, the wormhole family. Section 6 contains some
concluding remarks.

2. Basic Relations

We consider stationary cylindrically symmetric space-times with the metric

ds2 = e2γ(x)[dt− E(x) e−2γ(x) dϕ]2 − e2α(x)dx2 − e2µ(x)dz2 − e2β(x)dϕ2, (1)

where x0 = t ∈ R, x1 = x, x2 = z ∈ R and x3 = ϕ ∈ [0, 2π) are the temporal, radial, longitudinal and
angular (azimuthal) coordinates, respectively. The variable x is here specified up to a substitution x →
f (x), therefore its range depends on both the geometry itself and the “gauge” (the coordinate condition).
The off-diagonal component E describes rotation, or the vortex component of the gravitational field.
In the general case, this vortex gravitational field is determined by the 4-curl of the orthonormal tetrad
field eµ

m (Greek and Latin letters are here assigned to world and tetrad indices, respectively) [40,41]:

ωµ =
1
2

εµνρσemµ∂ρem
σ . (2)
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Kinematically, the axial vector ωµ is the angular velocity of tetrad rotation, it determines the
proper angular momentum density of the gravitational field,

Sµ(g) = ωµ/κ, κ = 8πG, (3)

where G is the Newtonian gravitational constant. In space-times with the metric (1) we have

ωµ =
1
2

δµ2(E e−2γ)′ eγ−α−β−µ (4)

(a prime stands for d/dx), and it appears sufficient to consider its absolute value ω(x) =
√

ωµωµ that
has the meaning of the angular velocity of a congruence of timelike curves (vorticity) [21,40,41],

ω =
1
2
(E e−2γ)′ eγ−β−α. (5)

Furthermore, in the reference frame comoving to matter as it rotates in the azimuthal (ϕ) direction,
the stress-energy tensor (SET) component T3

0 is zero, therefore due to the Einstein equations the Ricci
tensor component R3

0 ∼ (ω e2γ+µ)′ = 0, which leads to [21]

ω = ω0 e−µ−2γ, ω0 = const. (6)

Then, according to (5),

E(x) = 2ω0 e2γ(x)
∫

eα+β−µ−3γdx. (7)

Note that Equations (4)–(7) are valid for an arbitrary choice of the radial coordinate x. Preserving
this arbitrariness, we can write the nonzero components of the Ricci (Rν

µ) tensor as

R0
0 = − e−2α[γ′′ + γ′(σ′ − α′)]− 2ω2,

R1
1 = − e−2α[σ′′ + σ′2 − 2U − α′σ′] + 2ω2,

R2
2 = − e−2α[µ′′ + µ′(σ′ − α′)],

R3
3 = − e−2α[β′′ + β′(σ′ − α′)] + 2ω2,

R0
3 = G0

3 = E e−2γ(R3
3 − R0

0), (8)

where we are using the notations

σ = β + γ + µ, U = β′γ′ + β′µ′ + γ′µ′. (9)

The Einstein equations may be written in two equivalent forms

Gν
µ ≡ Rν

µ − 1
2 δν

µR = −κTν
µ , or (10)

Rν
µ = −κT̃ν

µ ≡ −κ(Tν
µ − 1

2 δν
µT). (11)

R being the Ricci scalar and T the SET trace. We will mostly use the form (11), of the equations, but it
is also necessary to write the constraint equation from (10), which contains only first-order derivatives
of the metric and represents a first integral of the other equations:

G1
1 = e−2αU + ω2 = −κT1

1 . (12)

Owing to the last line of (8) and its analogue for Tν
µ , in the Einstein equations it is sufficient to

solve the diagonal components, and then their only off-diagonal component holds automatically [21].
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As is evident from (8), the diagonal components of both the Ricci (Rν
µ) and the Einstein (Gν

µ)
tensors split into the corresponding tensors for the static metric (the metric (1) with E = 0) plus a
contribution containing ω [21]:

Rν
µ = sRν

µ + ωRν
µ, ωRν

µ = ω2 diag(−2, 2, 0, 2), (13)

Gν
µ = sGν

µ + ωGν
µ, ωGν

µ = ω2 diag(−3, 1,−1, 1), (14)

where sRν
µ and sGν

µ correspond to the static metric. It turns out that the tensors sGν
µ and ωGν

µ (each
separately) obey the conservation law ∇αGα

µ = 0 in terms of this static metric. Therefore, the tensor
ωGν

µ/κ may be interpreted as the SET of the vortex gravitational field. It possesses quite exotic properties
(thus, the effective energy density is −3ω2/κ < 0), which favor the existence of wormholes, and indeed,
a number of wormhole solutions with the metric (1) have already been obtained [21,22,39,41] with
sources in the form of scalar fields, isotropic or anisotropic fluids. Further on we will obtain one more
solution of this kind, now supported by a perfect fluid and a magnetic field due to an electric current.
Let us mention that an alternative extension of static solutions to rotating ones, with a combination of
electric and magnetic fields and a cosmological constant, was obtained in [42].

3. Solutions with A Perfect Fluid and A Magnetic Field

3.1. The Electromagnetic Field. A No-Go Theorem

Consider a longitudinal (z-directed) magnetic field, corresponding to the 4-potential

Aµ = (0, 0, 0, Φ(x)), (15)

so that the only nonzero components of the Maxwell tensor Fµν = ∂µAν − ∂νAµ are F13 = −F31 = Φ′(x).
The nonzero contravariant components Fµν are

F13 = e−2α−2βΦ′, F01 = E e−2α−2β−2γΦ′. (16)

The magnetic field magnitude (magnetic induction) B is determined by B2 = F13F13, so that the
electromagnetic field invariant is FµνFµν = 2B2.

No-go theorem. It can be shown that a free longitudinal magnetic field is incompatible with a
nonstatic (ω 6= 0) metric (1). This follows from solving the Maxwell equations, which, for Fµν of the
form (16) read

(
√
−gF13)′ = 0, (

√
−gF01)′ = 0, (17)

where
g = det(gµν),

√
−g = eα+β+γ+µ.

Equation (17) are integrated to give, respectively,

Φ′ e−α−β+γ+µ = h1, EΦ′ e−α−β−γ+µ = h2, (18)

where h1, h2 = const 6= 0. From (18), it follows E e−2γ = h2/h1, whence (E e−2γ)′ = 0, and according to
(6), ω = 0. We have shown that a free longitudinal magnetic field cannot support a vortex gravitational
field with the metric (1).

Let us also note that in the case E e−2γ = E1 = const, the term E e−2γdϕ is eliminated from (1) by
introducing the new time coordinate t′ = t− E1 ϕ, making the metric explicitly static.
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3.2. The Fluid

To circumvent the above no-go theorem, that is, to avoid the relation E e−2γ = const, let us
introduce a source of the magnetic field in the form of an electric current density Jµ = ρeuµ, where ρe

is the effective electric charge density (If we introduce a real nonzero charge density, it becomes
necessary to consider, in addition, a Coulomb electric field, which will make the problem hardly
tractable. We therefore consider an azimuthal electric current as if in a coil, in a neutral medium
like a conductor with free electrons and ions at rest.), and uµ is the 4-velocity satisfying the usual
normalization condition uµuµ = 1. We will assume that the effective charge distribution is at rest in
our rotating reference frame, so that

uµ = ( e−γ, 0, 0, 0), Jµ = (ρe e−γ, 0, 0, 0). (19)

As usual, the electric charge conservation equation ∇µ Jµ holds automatically due to the Maxwell
equations ∇νFµν = Jµ.

Two nontrivial Maxwell equations now read

(
√
−gF13)′ = 0, (20)

1√−g
(
√
−gF01)′ = ρe e−γ. (21)

Integrating Equation (20), we obtain, as before,

Φ′ = h eα+β−γ−µ, h = const, (22)

and substituting this Φ′ to Equation (21) with (16), we arrive at the following expression for ρe:

ρe = hω0 e−2µ−3γ. (23)

On the other hand, the electric charges should have a material carrier, for which we will assume a
perfect fluid with a barotropic equation of state and postulate a constant ratio of the effective charge
density ρe to energy density ρ:

ρe/ρ = A = const; p/ρ = w = const, (24)

p being the fluid pressure. We do not fix the value of w but later on we will obtain a restriction on it.
The fluid must obey the conservation law ∇νTν

µ = 0, which gives in our comoving reference frame

p′ + (p + ρ)γ′ = 0, (25)

which, for w 6= 0, leads to the expression

ρ = ρ0 e−γ(w+1)/w, ρ0 = const. (26)

Comparing (23) and (26), taking into account the assumption ρe/ρ = A = const, we obtain a
relation between the metric coefficients e2γ and e2µ:

Aρ0 e2µ = hω0 e−γ(w+1)/(2w). (27)

In the case w = 0 (zero pressure), the conservation law (25) simply leads to γ = const.



Symmetry 2020, 12, 1306 6 of 16

3.3. Solution of the Einstein Equations

To address the Einstein equations, let us write the expressions for the SETs of the perfect fluid and
the electromagnetic field. For the fluid we have

Tν
µ [ f ] = ρ diag(1,−w,−w,−w). (28)

For the electromagnetic field SET we have the standard expression

Tν
µ [e] =

1
16π

(
− FµαFνα + 4δν

µFαβFαβ
)
,

which in our case leads to

Tν
µ [e] =

B2

8π
diag(1.− 1, 1,−1)⊕ T0

3 [e], (29)

where B2 = h2 e−2γ−2µ, and the only off-diagonal component

T0
3 [e] = −

1
4π

hΦ′ e−2γ (30)

does not affect the solution process, as mentioned in a remark after Equation (12).
Thus far all relations and expressions were written in terms of an arbitrary radial coordinate x.

However, to solve the Einstein equations it is helpful, at last, to choose the “gauge”, and by analogy
with our previous studies we will use the harmonic radial coordinate corresponding to

α = β + γ + µ. (31)

With the above expressions for the SET and Equation (8), the noncoinciding components of
Equations (11) and (12), taking into account the expressions (6) for ω and (26) for ρ, may be written as

γ′′ = −2ω2
0 e2β−2γ +

1 + 3w
2

K e2β−γ + Gh2 e2β, (32)

µ′′ =
w− 1

2
K e2β−γ + Gh2 e2β, (33)

β′′ = 2ω2
0 e2β−2γ +

w− 1
2

K e2β−γ − Gh2 e2β, (34)

β′γ′ + β′µ′ + γ′µ′ = −ω2
0 e2β−2γ + wK e2β−γ + Gh2 e2β, (35)

where K = κhω0/A (recall that κ = 8πG).
Now, combining Equations (32) and (33) with (27), we arrive at the algebraic equation for γ with

constant coefficients,

4ω2
0(1− 2w) e−2γ + (8w2 − 3w− 1)K e−γ + 2(4w− 1)Gh2 = 0, (36)

from which it follows γ = const, and we can without loss of generality put γ ≡ 0 by choosing a time
scale. Then Equation (27) implies µ = const which also allows us to put µ ≡ 0 by choosing the scale
along z; from (27) we then obtain a relation among the constants: hω0 = Aρ0, so that, in particular,
K = κρ0.

With eγ = eµ = 1, from Equations (32) and (33) we find

Gh2 =
1
2
(1− w)K, ω2

0 =
1
2
(1 + w)K, (37)

which leads to a conclusion on the range of w:

− 1 < w < 1. (38)
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With (37) it is directly verified that Equations (35) and (36) also hold. All our constant parameters
may be expressed in terms of two of them, for example, ω0 and w:

Gh2 =
1− w
1 + w

ω2
0 , κρ0 =

2ω2
0

1 + w
, A =

ρe

ρ
= 4π

√
G(1− w2). (39)

We see that in our system not only µ = γ = 0, but also both densities ρ and ρe as well as the
angular velocity ω are constant. It is also of interest that the two limiting cases of the equation of
state, w = 1 (maximum stiffness compatible with causality) and w = −1 (the cosmological constant)
are excluded in the present system. In both these cases, static and stationary cylindrically symmetric
solutions without an electromagnetic field are well known [3,17,18,21,23,37,39].

The remaining differential Equation (34) has the Liouville form

β′′ =
4w

w + 1
ω2

0 e2β. (40)

and has the first integral

β′2 =
4w

w + 1
ω2

0 e2β + k2 sign k, (41)

with k = const. The further integration depends on the signs of w and k:

1. w < 0, k > 0, eβ =
k

m cosh(kx)
; . (42)

2. w > 0, k > 0 : eβ =
k

m sinh(kx)
; . (43)

3. w > 0, k = 0 : eβ =
1

mx
; . (44)

4. w > 0, k < 0 : eβ =
|k|

m cos(|k|x) ; . (45)

where we have denoted m =

(
4|w|ω2

0
w + 1

)1/2

.

In the previously excluded case w = 0 (dustlike matter), the equality γ = const is immediately
obtained from (25), µ = const then follows from (27), and as before, without loss of generality, we can
put µ = γ = 0. Instead of (40), we obtain β′′ = 0 whence we can write

eβ = r0 ekx, r0, k = const. (46)

In all cases the off-diagonal metric function E is easily obtained as

E(x) = 2ω0

∫
e2βdx. (47)

4. Melvin-Like Universes

Melvin’s electric or magnetic geon [13] is among the most well-known static, cylindrically
symmetric solutions to the Einstein–Maxwell equations; it is a special solution from a large class
of static, cylindrically symmetric solutions with radial, azimuthal and longitudinal electric and/or
magnetic fields; see, e.g., [1,3,14]. Its metric may be written in the form [3,14]

ds2 = (1 + q2x2)2(dt2 − dx2 − dz2)− x2

(1 + q2x2)2 dϕ2, (48)
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where x ≥ 0, and the magnetic (let us take it for certainty) field magnitude is

B = Bz = 2q(1 + q2x2)−2,

with q = const characterizing the effective current that might be its source. However, this solution
describes a purely field configuration existing without any massive matter, electric charges or currents.
Both the metric and the magnetic field are regular on the axis x = 0. The other “end”, x → ∞,
is infinitely far away (the distance

∫ √−gxxdx diverges), the magnetic field vanishes there, and the
circular radius r =

√
−gϕϕ also tends to zero, so that the whole configuration is closed in nature,

without spatial infinity, and with finite total magnetic field energy per unit length along the z axis.
As we saw in Section 3.1, such a free magnetic field cannot support a rotating counterpart of

Melvin’s solution, but Einstein–Maxwell solutions with a longitudinal magnetic field are obtained in
the presence of perfect fluids with electric currents. Let us briefly discuss their main features.

In all cases under consideration, the magnetic field is directed along the z axis and has the constant
magnitude B = h, while the metric has the form

ds2 = (dt− Edϕ)2 − e2βdx2 − dz2 − e2βdϕ2, (49)

and E is determined byEquation (47). Note that both ϕ and x are dimensionless while t, z and eβ have
the dimension of length.

Dustlike Matter, Equation (46)

Let us begin with the case w = 0. For E(x) we find

E = E0 +
ω0r2

0
k

e2kx = E0 +
ω0

k
r2,

r = r0 ekx, E0 = const, (50)

where E0 is an integration constant. In terms of the coordinate r, the metric reads

ds2 =
(

dt− Edϕ2
)2
− k−2dr2 − dz2 − r2dϕ2. (51)

The symmetry axis r = 0 is regular in the case E0 = 0, k = 1 (The axis regularity conditions
require [1,3,43] finite values of the curvature invariants plus local flatness (sometimes also called
“elementary flatness”) as a correct circumference to radius ratio for small circles around the axis,
which in our case leads to the condition e−2αR′2 → 1, where R =

√−g33.). Also, in this case

g33 = E2 − r2 = r2(−1 + ω2
0r2) (52)

changes its sign at r = ω−1, and at larger r the lines of constant t, r, z (coordinate circles) are timelike,
thus being closed timelike curves (CTCs) violating causality.

Solution 1, Equation (42)

For w < 0, with (42), for E(x) we calculate

E = E0 +
2kω0

m2 tanh kx, (53)

The metric has the form

ds2 = (dt− Edϕ)2 − dz2 − k2

m2 cosh2(kx)
(dx2 + dϕ2), (54)
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where, for convenience, we have rearranged the terms with dz2 and dx2 as compared to (49).
For g33, similarly to (52), again putting E0 = 0 and recalling the definition of m, we obtain

g33 = − k2

m2

[
1− 1
|w| tanh2 kx

]
. (55)

In this solution x ∈ R, and at both extremes x → ±∞ we have r = eβ → 0, i.e., these are two
centers of symmetry (or poles) on the (x, ϕ) 2-surface, or two symmetry axes from the viewpoint of
3-dimensional space. However, as follows from (55), g33 is positive (hence contains CTCs) where
| tanh kx| > |w|, that is, at large enough |x|, in circular regions around the two poles.

By choosing another value of the integration constant E0 one can make one of the poles free from
CTCs, at the expense of enlarging the CTC region around the other pole. One of the poles can even be
made regular by a proper choice of the parameters. For example, choosing E0 = 2kω0/m2, we obtain
E = 0 at x = −∞, and it is easy to verify that the pole x = −∞ is then regular under the condition
k = 1.

Solution 2, Equation (43)

For w > 0, k > 0, with (43), for E(x) we find

E = E0 −
2kω0

m2 coth kx. (56)

The metric takes the form

ds2 = (dt− Edϕ)2 − dz2 − k2

m2 sinh2(kx)
(dx2 + dϕ2), (57)

It is convenient to introduce the new coordinate y by substituting

e−2kx = 1− 2k
y

, (58)

after which we obtain
r2 = e2β =

y
m2 (y− 2k). E = E0 −

2ω0

m2 y. (59)

The range x > 0 is converted to y ≥ 2k, where y = 2k is the axis of symmetry. The metric now has
the form

ds2 = (dt− Edϕ)2 − dy2

my(y− 2k)
− dz2 − y

m2 (y− 2k)dϕ2. (60)

Assuming E0 = 0, for g33 it is then easy to obtain the expression

g33 =
y

m2

( y
w

+ 2k
)
> 0, (61)

which means that CTCs are present everywhere, and actually this space-time has an incorrect signature,
(+−−+) instead of (+−−−).

However, with nonzero values of E0 it becomes possible to get rid of CTCs in some part of space.
Thus, choosing E0 in such a way that E = 0 at some y0 > 2k, we will obtain the normal sign g33 < 0 in
some range of y around y0.
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Solution 3, Equation (44)

In the case w > 0, k = 0, with (44), it is convenient to use the coordinate r = 1/(mx), and then
we obtain

E = E0 +
2ω0

r
, ds2 = (dt− Edϕ)2 − dr2

m2r2 − dz2 − r2dϕ2, (62)

and assuming E0 = 0, we arrive at

g33 = −r2
(

1−
2ω2

0
m2

)
= r2 1− w

2w
> 0. (63)

We again obtain a configuration with an incorrect signature, possessing CTCs at all r. However,
as in the previous case, by choosing E0 so that E = 0 at some r = r0 we can provide a CTC-free region
in a thick layer around r = r0.

5. Wormholes

With the solution (45) for r = eβ, the range of x is x ∈
(
−π/(2k̄), π/(2k̄)

)
, where k̄ = −k > 0,

and we see that r → ∞ on both ends, confirming the wormhole nature of this configuration,
where x = 0 is the wormhole throat (minimum of r). Substituting y = k̄ tan k̄x, we obtain the
metric in the form

ds2 = (dt− Edϕ)2 − dy2

m2(k̄2 + y2)
− dz2 − k̄2 + y2

m2 dϕ2, (64)

where y ∈ R, and y = 0 is the throat; furthermore,

E = E0 +
2ω0

m2 y, (65)

and for g33 in the case E0 = 0 (which makes the solution symmetric with respect to y = 0) it follows

g33 = − k̄2

m2 +
1− w

2w
y2

m2 . (66)

The expression (66) shows that CTCs are absent around the throat, at y2 < 2k̄2w/(1−w), while at
larger |y| the CTCs emerge.

Let us note that in the limit w→ 1, so that the fluid EoS tends to that of maximally stiff matter,
the magnetic field disappears (h → 0 according to (37)), and the whole solution tends to the one
obtained in [39] for a cylindrical wormhole with stiff matter.

As always with rotating cylindrical wormhole solutions, these wormholes do not have a flat-space
asymptotic behavior at large |x|, which makes it impossible to interpret them as objects that can be
observed from regions with small curvature. To overcome this problem, it has been suggested [21] to
cut out of the obtained wormhole solution a regular region, containing a throat, and to place it between
two flat regions, thus making the whole system manifestly asymptotically flat. However, to interpret
such a “sandwich” as a single space-time, it is necessary to identify the internal and external metrics
on the junction surfaces Σ+ and Σ−, which should be common for these regions. The internal region
will be described in the present case by (64), (65)). Furthermore, since the internal metric contains
rotation, the external Minkowski metric should also be taken in a rotating reference frame.

Thus we take the Minkowski metric in cylindrical coordinates, ds2
M = dt2 − dX2 − dz2 − X2dϕ2,

and convert it to a rotating reference frame with angular velocity Ω = const by substituting ϕ →
ϕ + Ωt, so that

ds2
M = dt2 − dX2 − dz2 − X2(dϕ + Ωdt)2. (67)



Symmetry 2020, 12, 1306 11 of 16

In the notations of (1), the relevant quantities in (67) are

e2γ = 1−Ω2X2, e2β =
X2

1−Ω2X2 ,

E = ΩX2, ω =
Ω

1−Ω2X2 . (68)

This stationary metric admits matching with the internal metric at any |X| < 1/|Ω|, inside the
“light cylinder” |X| = 1/|Ω| on which the linear rotational velocity coincides with the speed of light.

Making use of the symmetry of (64), let us assume that the internal region is−y∗ < y < y∗, so that
the junction surfaces Σ± are situated at y = ±y∗, to be identified with X± = ±X∗ in Minkowski space,
respectively, so that the external flat regions are X < −X∗ and X > X+. Matching is achieved if we
identify there the two metrics, so that

[β] = 0, [µ] = 0, [γ] = 0, [E] = 0, (69)

where, as usual, the brackets [ f ] denote a discontinuity of any function f across the surface. Under the
conditions (69), we can suppose that the coordinates t, z, φ are the same in the whole space. At the same
time, there is no need to adjust the choice of radial coordinates on different sides of the junction surfaces
since the quantities involved in all matching conditions are insensitive to possible reparametrizations
of y or X.

Having identified the metrics, we certainly did not adjust their normal derivatives, whose jumps
are well known to determine the properties of matter filling a junction surface Σ and forming there a
thin shell. The SET Sb

a of such a thin shell is calculated using the Darmois–Israel formalism [44–46],
and in the present case of a timelike surface, Sb

a is related to the extrinsic curvature Kb
a of Σ as

Sb
a = −(8πG)−1[K̃b

a], K̃b
a := Kb

a − δb
a Kc

c , (70)

where the indices a, b, c = 0, 2, 3. The general expressions for nonzero components of K̃b
a for surfaces

x = const in the metric (1) are [39]

K̃00 = − e−α+2γ(β′ + µ′),

K̃03 = − 1
2 e−αE′ + E e−α(β′ + γ′ + µ′),

K̃22 = e−α+2µ(β′ + γ′),

K̃33 = e−α+2β(γ′ + µ′) + e−α−2γ[EE′ − E2(β′ + 2γ′ + µ′)]. (71)

From (71) it is straightforward to find Sa
b on the surfaces Σ±. However, our interest is not in

finding these quantities themselves but, instead, a verification of whether or not the resulting SET Sa
b

satisfies the WEC. Let us use for this purpose the necessary and sufficient conditions obtained in a
general form in [38], see also a detailed description in [39]. These conditions are

a + c +
√
(a− c)2 + 4d2 ≥ 0, (72)

a + c +
√
(a− c)2 + 4d2 + 2b ≥ 0, (73)

a + c ≥ 0, (74)

where

a = −[ e−α(β′ + µ′)], b = [ e−α(β′ + γ′)],

c = [ e−α(γ′ + µ′)], d = −[ω] (75)
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Let us discuss, for certainty, the conditions on Σ+ : y = y∗, X = X∗ with our metrics (64),
(65) and (67). Among the matching conditions (69), [µ] = 0 holds automatically, while to satisfy the
condition [γ] = 0 we will rescale the time coordinate in the internal region according to

t =
√

Pt̃, P := 1−Ω2X2 (76)

and use the new coordinate t̃, with which, instead of E, we must use E
√

P in all formulas.
The remaining two conditions (69) yield

ΩX2 =
2ω0

m
y
√

P,
k2 + y2

m2 =
X2

P
, (77)

where, without risk of confusion, we omit the asterisk at X and y. With these conditions, there are four
independent parameters of the system, for example, we can choose as such parameters

X, y, P, n =
2ω2

0
m

=
w + 1

2w
. (78)

The other parameters are expressed in their terms as

Ω =

√
1−P
X

, ω0 =
ny
√

P
X
√

1− P
, k2 =

y2(2n− 1 + P)
1− P

. (79)

Now we can calculate the quantities (75), with [ f ] = fout − fin on Σ+:

a =
yP3/2 − 1

PX
, b =

1− y
√

P
X

, c = −1− P
PX

, d =
nyP3/2 − 1 + P

PX
√

1− P
. (80)

It can be easily verified that the conditions (72)–(74) are satisfied as long as

y ≥ 2− P
P3/2 , (81)

in full analogy with the corresponding calculation in [39].
We have shown that under the condition (81) the WEC holds on Σ+. Now, what changes on the

surface Σ− specified by X = −X∗ < 0 and y = −y∗ < 0, where we must take [ f ] = fout − fin for any
function f ? As in [39], it can be verified that the parameters a, b, c do not change from (80) if we replace
X with |X| (we denote, as before, y = y∗ > 0). For d = −[ω] there will be another expression since,
according to (69), Ω(Σ−) = −Ω(Σ+), while in the internal solution ω(Σ−) = ω(Σ+), hence on Σ−

d 7→ d− = −n|y|P3/2 + 1− P
|X|P
√

1− P
,

so that |d−| > |d|, making it even easier to satisfy the WEC requirements. As a result, the WEC holds
under the same condition (81), providing a wormhole model which is completely phantom-free.

We can also notice that from (79) it follows y2
∗ < k2, therefore, y2 < k2 in the whole internal region,

which is thus free from CTCs.
There is one more point to bear in mind: since there is a z-directed magnetic field in the internal

region, we must suppose that there are some surface currents on Σ± in the ϕ direction. Their values
can be easily calculated using the Maxwell equations ∇νFµν = Jµ. Indeed, say, Σ+ (x = x∗)
separates the region where Fµν = 0 from the one with nonzero Fµν, therefore at their junction we
have Jµ = −δ(x − x∗)Jµ(x∗ − 0), so that the surface current is Ja = −Jµ(x∗ − 0)

∣∣
µ=a. Similarly,
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on Σ− (x = −x∗) we obtain Ja = Jµ(−x∗ + 0)
∣∣
µ=a. In our wormhole configurations we obtain,

according to (23), (24), (27) and taking into account that γ = µ ≡ 0,

Ja = (J0, 0, 0), J0(Σ±) = ∓hω0. (82)

Thus the surface currents on Σ± have only the temporal component, i.e., they are comoving to the
matter and current in the internal region.

As is the case with the internal wormhole solution, in the limit w→ 1 (hence n→ 1) the whole
twice asymptotically flat construction tends to the one obtained in [39] with a stiff matter source.

6. Concluding Remarks

We have obtained a family of stationary cylindrically symmetric solutions to the Einstein–Maxwell
equations in the presence of perfect fluids with p = wρ, |w| < 1. Some of them (Solutions 1–3) contain
a symmetry axis which can be made regular by properly choosing the solution parameters. The only
geometry of closed type belongs to Solution 1, Equations (42) and (53)–(55). Unlike Melvin’s solution
and like all other solutions with rotation, it inevitably contains a region where g33 > 0, so that the
coordinate circles parametrized by the angle ϕ are timelike, violating causality.

The wormhole models discussed here are of interest as new examples of phantom-free wormholes
in general relativity, respecting the WEC. As in other known examples [38,39], such a result is achieved
owing to the exotic properties of vortex gravitational fields with cylindrical symmetry, and their
asymptotic behavior making them potentially observable from flat or weakly curved regions of space
is provided by joining flat regions on both sides of the throat. Such a complex structure is necessary
because asymptotic flatness at large circular radii cannot be achieved in any cylindrical solutions with
rotation. The present family of models with a magnetic field, parametrized by the equation-of-state
parameter w < 1, tends to the one obtained in [39] in the limit w → 1, in which the magnetic
field vanishes.

Let us mention that other static or stationary wormhole models with proper asymptotic behavior
and matter sources respecting the WEC have been obtained in extensions of general relativity, such as
the Einstein–Cartan theory [47,48], Einstein–Gauss–Bonnet gravity [49], multidimensional gravity
including brane worlds [50,51], theories with nonmetricity [52], Horndeski theories [53], etc.

One can also notice that the same trick as was used with wormhole models, that is, joining a flat
region taken in a rotating reference frame, can be used as well with solutions possessing a symmetry
axis. It is important that in all such cases the surface to be used as a junction should not contain CTCs
(in other words, there should be, as usual, g33 < 0) because g33 < 0 in the admissible part of flat space,
while g33 taken from the external and internal regions should be identified at the junction. In this way
one can obtain completely CTC-free models of extended cosmic strings with rotation.

A possible observer can be located far from such an extended string or wormhole configuration
and be at rest in a nonrotating frame in flat space, other than the one used for the object construction.
A question of interest is that of their observational appearance. If such a stringlike object does not emit
radiation of its own, it can undoubtedly manifest itself by gravitational lensing in the same way as
is discussed for cosmic strings (certainly if there is the corresponding angular deficit in the external,
locally flat region); see, e.g., [54–56] and references therein. Moreover, possible signals scattered in the
strong field region can carry information of interest on the nature and motion of rotating matter that
forms such objects.

An evident further development of this study can be a search for other rotating configurations
with electromagnetic fields, possibly including radiation in different directions in the spirit of [57],
where radial, azimuthal and longitudinal radiation flows were considered as sources of gravity in
space-times with the metric (1). Another set of problems concerns electrostatics in the fields of extended
strings or wormholes with sources including electromagnetism. As follows from [58], even in simpler,
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partly conical cylindrical geometries with thin shells electrostatics turns out to be rather interesting
and complex.
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