Terminating Basic Hypergeometric Representations and Transformations for the Askey–Wilson Polynomials
Abstract
:1. Introduction
2. Preliminaries
3. The Askey–Wilson Polynomials
3.1. The Askey–Wilson Polynomial Representations
3.2. Terminating 4-Parameter Symmetric Transformations
3.3. Terminating 4-Parameter Symmetric Interchange Transformations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koekoek, R.; Lesky, P.A.; Swarttouw, R.F. Hypergeometric Orthogonal Polynomials and Their q-Analogues; Springer Monographs in Mathematics; Springer-Verlag: Berlin, Germany, 2010. [Google Scholar]
- Rosengren, H. An elementary approach to 6j-symbols (classical, quantum, rational, trigonometric, and elliptic). Ramanujan J. 2007, 13, 131–166. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.E.H.; Zhang, R. New Orthogonal Polynomials of Askey-Wilson Type. 2020; in preparation. [Google Scholar]
- Van der Jeugt, J.; Rao, S.K. Invariance groups of transformations of basic hypergeometric series. J. Math. Phys. 1999, 40, 6692–6700. [Google Scholar] [CrossRef]
- Krattenthaler, C.; Rao, S.K. On group theoretical aspects, hypergeometric transformations and symmetries of angular momentum coefficients. In Symmetries in Science XI; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 355–376. [Google Scholar]
- Kajihara, Y. Symmetry groups of An hypergeometric series. SIGMA. Symmetry Integr. Geom. 2014, 10, 026. [Google Scholar] [CrossRef] [Green Version]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series, 2nd ed.; Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 2004; Volume 96. [Google Scholar]
- Olver, F.W.J.; Olde Daalhuis, A.B.; Lozier, D.W.; Schneider, B.I.; Boisvert, R.F.; Clark, C.W.; Miller, B.R.; Saunders, B.V.; Cohl, H.S.; McClain, M.A. (Eds.) NIST Digital Library of Mathematical Functions. Available online: http://dlmf.nist.gov/ (accessed on 9 June 2020).
- Koornwinder, T.H. Additions to the formula lists in “Hypergeometric orthogonal polynomials and their q-analogues” by Koekoek, Lesky and Swarttouw. arXiv 2015, arXiv:1401.0815v2. [Google Scholar]
- Ismail, M.E.H.; Wilson, J.A. Asymptotic and generating relations for the q-Jacobi and 4φ3 polynomials. J. Approx. Theory 1982, 36, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Askey, R.; Wilson, J. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 1985, 54. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohl, H.S.; Costas-Santos, R.S.; Ge, L. Terminating Basic Hypergeometric Representations and Transformations for the Askey–Wilson Polynomials. Symmetry 2020, 12, 1290. https://doi.org/10.3390/sym12081290
Cohl HS, Costas-Santos RS, Ge L. Terminating Basic Hypergeometric Representations and Transformations for the Askey–Wilson Polynomials. Symmetry. 2020; 12(8):1290. https://doi.org/10.3390/sym12081290
Chicago/Turabian StyleCohl, Howard S., Roberto S. Costas-Santos, and Linus Ge. 2020. "Terminating Basic Hypergeometric Representations and Transformations for the Askey–Wilson Polynomials" Symmetry 12, no. 8: 1290. https://doi.org/10.3390/sym12081290