# Unsettling Physics in the Quantum-Corrected Schwarzschild Black Hole

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Pseudo-Newtonian Potential for the Quantum-Corrected Black Hole

## 3. Kodama Vector, Misner-Sharp-Hernandez Mass, and Kodama Temperature

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Wald, R.M. General Relativity; Chicago University Press: Chicago, IL, USA, 1984. [Google Scholar]
- Hayward, S.A. Formation and evaporation of regular black holes. Phys. Rev. Lett.
**2006**, 96, 031103. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Frolov, V.P. Notes on nonsingular models of black holes. Phys. Rev. D
**2016**, 94, 104056. [Google Scholar] [CrossRef] [Green Version] - De Lorenzo, T.; Pacilio, C.; Rovelli, C.; Speziale, S. On the Effective Metric of a Planck Star. Gen. Relat. Gravit.
**2015**, 47, 41. [Google Scholar] [CrossRef] [Green Version] - De Lorenzo, T.; Giusti, A.; Speziale, S. Non-singular rotating black hole with a time delay in the center. Gen. Relat. Gravit.
**2016**, 48, 31. [Google Scholar] [CrossRef] [Green Version] - Giusti, A. On the corpuscular theory of gravity. Int. J. Geom. Meth. Mod. Phys.
**2019**, 16, 1930001. [Google Scholar] [CrossRef] [Green Version] - Casadio, R.; Giugno, A.; Giusti, A.; Lenzi, M. Quantum corpuscular corrections to the Newtonian potential. Phys. Rev. D
**2017**, 96, 044010. [Google Scholar] [CrossRef] [Green Version] - Casadio, R.; Lenzi, M.; Micu, O. Bootstrapping Newtonian gravity. Phys. Rev. D
**2018**, 98, 104016. [Google Scholar] [CrossRef] [Green Version] - Casadio, R.; Lenzi, M.; Micu, O. Bootstrapped Newtonian stars and black holes. Eur. Phys. J. C
**2019**, 79, 894. [Google Scholar] [CrossRef] - Boehmer, C.G.; Vandersloot, K. Loop quantum dynamics of Schwarzschild interior. Phys. Rev. D
**2007**, 76, 1004030. [Google Scholar] [CrossRef] [Green Version] - Chiou, D.W. Phenomenological loop quantum geometry of the Schwarzschild black hole. Phys. Rev. D
**2008**, 78, 064040. [Google Scholar] [CrossRef] [Green Version] - Corichi, A.; Singh, P. Loop quantum dynamics of Schwarzschild interior revisited. Class. Quantum Grav.
**2016**, 33, 055006. [Google Scholar] [CrossRef] - Olmedo, J.; Saini, S.; Singh, P. From black holes to white holes: A quantum gravitational symmetric bounce. Class. Quantum Grav.
**2017**, 34, 225011. [Google Scholar] [CrossRef] - Bouhmadi-López, M.; Brahma, S.; Chen, C.-Y.; Chen, P.; Yeom, D.-H. Asymptotic non-flatness of an effective black hole model based on loop quantum gravity. arXiv
**2020**, arXiv:1902.07874. [Google Scholar] - Khodadi, M.; Allahyari, A.; Vagnozzi, S.; Mota, D.F. Black holes with scalar hair in light of the Event Horizon Telescope. arXiv
**2020**, arXiv:2005.05992. [Google Scholar] - Ashtekar, A.; Olmedo, J.; Singh, P. Quantum Transfiguration of Kruskal Black Holes. Phys. Rev. Lett.
**2018**, 121, 241301. [Google Scholar] [CrossRef] [Green Version] - Ashtekar, A.; Olmedo, J.; Singh, P. Quantum Extension of the Kruskal Space-time. Phys. Rev. D
**2018**, 98, 126003. [Google Scholar] [CrossRef] [Green Version] - Ashtekar, A.; Olmedo, J. Properties of a recent quantum extension of the Kruskal geometry. arXiv
**2020**, arXiv:2005.02309. [Google Scholar] - Carroll, S.M. Spacetime and Geometry: An Introduction to General Relativity; Addison Wesley: San Francisco, CA, USA, 2004. [Google Scholar]
- The Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett.
**2019**, 875, L1. [Google Scholar] [CrossRef] - Psaltis, D.; Perrodin, D.; Dienes, K.R.; Mocioiu, I. Kerr Black Holes Are Not Unique to General Relativity. Phys. Rev. Lett.
**2008**, 100, 091101, Erratum**2008**, 100, 119902. [Google Scholar] [CrossRef] - Jain, B.; Khoury, J. Cosmological tests of gravity. Ann. Phys.
**2010**, 325, 1479–1516. [Google Scholar] [CrossRef] [Green Version] - Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rep.
**2012**, 513, 1–189. [Google Scholar] [CrossRef] [Green Version] - Berti, E.; Cardoso, V.; Gualtieri, L.; Horbatsch, M.; Sperhake, U. Numerical simulations of single and binary black holes in scalar-tensor theories: Circumventing the no-hair theorem. Phys. Rev. D
**2013**, 87, 124020. [Google Scholar] [CrossRef] [Green Version] - Baker, T.; Psaltis, D.; Skordis, C. Linking tests of gravity on all scales: From the strong-field regime to cosmology. Astrophys. J.
**2015**, 802, 63. [Google Scholar] [CrossRef] [Green Version] - Berti, E.; Barausse, E.; Cardoso, V.; Gualtieri, L.; Pani, P.; Sperhake, U.; Stein, L.C.; Wex, N.; Yagi, K.; Baker, T.; et al. Testing general relativity with present and future astrophysical observations. Class. Quantum Grav.
**2015**, 32, 243001. [Google Scholar] [CrossRef] - Sotiriou, T.P.; Faraoni, V. Black Holes in Scalar-Tensor Gravity. Phys. Rev. Lett.
**2010**, 108, 081103. [Google Scholar] [CrossRef] [Green Version] - Horbatsch, M.W.; Burgess, C.P. Cosmic black-hole hair growth and quasar OJ287. J. Cosmol. Astropart. Phys.
**2012**, 1205, 010. [Google Scholar] [CrossRef] - Cardoso, V.; Carucci, I.P.; Pani, P.; Sotiriou, T.P. Black Holes with Surrounding Matter in Scalar-Tensor Theories. Phys. Rev. Lett.
**2013**, 111, 111101. [Google Scholar] [CrossRef] [Green Version] - Herdeiro, C.A.R.; Radu, E. Kerr Black Holes with Scalar Hair. Phys. Rev. Lett.
**2014**, 112, 221101. [Google Scholar] [CrossRef] [Green Version] - Sotiriou, T.P.; Zhou, S.-Y. Black Hole Hair in Generalized Scalar-Tensor Gravity. Phys. Rev. Lett.
**2014**, 112, 251102. [Google Scholar] [CrossRef] [Green Version] - Paczynski, B.; Wiita, P.J. Thick Accretion Disks and Supercritical Luminosities. Astron. Astrophys.
**1980**, 88, 23–31. [Google Scholar] - Kovár, J.; Stuchlík, Z.; Slaný, P. Pseudo-Newtonian gravitational potential of Schwarzschild black hole in the presence of quintessence. In Proceedings of RAGtime 10–13, 15–17/20–22/15–17/14–16 September 2008/2009/2010/2011, Opava, Czech Republic; Stuchlík, Z., Török, G., Pecháček, T., Eds.; Silesian University: Opava, Czech Republic, 2014; pp. 133–141. [Google Scholar]
- Abramowicz, M.A. The Paczynski-Wiita potential: A step-by-step “derivation”. Astron. Astrophys.
**2009**, 500, 213–214. [Google Scholar] [CrossRef] [Green Version] - Abramowicz, M.A.; Calvani, M.; Nobili, L. Thick accretion disks with super-Eddington luminosities. Astrophys. J.
**1980**, 242, 772. [Google Scholar] [CrossRef] - Nowak, M.A.; Wagoner, R.V. Diskoseismology: Probing Accretion Disks. I. Trapped Adiabatic Oscillations. Astrophys. J.
**1991**, 378, 656–664. [Google Scholar] [CrossRef] - Artemova, I.V.; Bjornsson, G.; Novikov, I.D. Modified Newtonian Potentials for the Description of Relativistic Effects in Accretion Disks around Black Holes. Astrophys. J.
**1996**, 461, 565. [Google Scholar] [CrossRef] - Semerak, O.; Karas, V. Pseudo-Newtonian models of a rotating black hole field. Astron. Astrophys.
**1999**, 343, 325. [Google Scholar] - Kluzniak, W.; Lee, W.H. The swallowing of a quark star by a black hole. Mon. Not. R. Astron. Soc.
**2002**, 335, L29. [Google Scholar] [CrossRef] [Green Version] - Mukhopadhyay, B.; Misra, R. Pseudo-Newtonian Potentials to Describe the Temporal Effects on Relativistic Accretion Disks around Rotating Black Holes and Neutron Stars. Astrophys. J.
**2003**, 582, 347. [Google Scholar] [CrossRef] [Green Version] - Ivanov, R.I.; Prodanov, E.M. Pseudo-Newtonian potential for charged particle in Kerr–Newman geometry. Phys. Lett. B
**2005**, 611, 34–38. [Google Scholar] [CrossRef] [Green Version] - Chakrabarti, S.K.; Mondal, S. Studies of accretion flows around rotating black holes—I. Particle dynamics in a pseudo-Kerr potential. Mon. Not. R. Astron. Soc.
**2006**, 369, 976–984. [Google Scholar] [CrossRef] [Green Version] - Ghosh, S.; Mukhopadhyay, B. Generalized Pseudo-Newtonian Potential for Studying Accretion Disk Dynamics in Off-Equatorial Planes around Rotating Black Holes: Description of a Vector Potential. Astrophys. J.
**2007**, 667, 367. [Google Scholar] [CrossRef] [Green Version] - Wegg, C. Pseudo-Newtonian Potentials for Nearly Parabolic Orbits. Astrophys. J.
**2012**, 749, 183. [Google Scholar] [CrossRef] [Green Version] - Stuchlík, Z.; Slaný, P.; Kovár, J. Pseudo-Newtonian and general relativistic barotropic tori in Schwarzschild-de Sitter spacetimes. Class. Quantum Grav.
**2009**, 26, 215013. [Google Scholar] [CrossRef] [Green Version] - Stuchlík, Z.; Kovár, J. Pseudo-Newtonian gravitational potential for Schwarzschild-de Sitter spacetimes. Int. J. Mod. Phys. D
**2008**, 17, 2089–2105. [Google Scholar] [CrossRef] [Green Version] - Tejeda, E.; Rosswog, S. Generalized Newtonian description of particle motion in spherically symmetric spacetimes. arXiv
**2014**, arXiv:1402.1171. [Google Scholar] - Witzany, V.; Semerák, O.; Suková, P. Free motion around black holes with discs or rings: Between integrability and chaos—IV. Mon. Not. R. Astron. Soc.
**2015**, 451, 1770–1794. [Google Scholar] [CrossRef] - Faraoni, V.; Belknap-Keet, S.D.; Lapierre-Léonard, M. Paczynski-Wiita-like potential for any static spherical black hole in metric theories of gravity. Phys. Rev. D
**2016**, 93, 044042. [Google Scholar] [CrossRef] [Green Version] - Casadio, R.; Giusti, A.; Mentrelli, A. Orbits in a stochastic Schwarzschild geometry. Phys. Rev. D
**2019**, 100, 02403. [Google Scholar] [CrossRef] [Green Version] - Painlevé, P. La mécanique classique et la théorie de la relativité. C. R. Acad. Sci. (Paris)
**1921**, 173, 677–680. [Google Scholar] - Gullstrand, A. Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie. Arkiv. Mat. Astron. Fys.
**1912**, 16, 1. [Google Scholar] - Martel, K.; Poisson, E. Regular coordinate systems for Schwarzschild and other spherical spacetimes. Am. J. Phys.
**2001**, 69, 476–480. [Google Scholar] [CrossRef] [Green Version] - Faraoni, V.; Vachon, G. When Painlevé-Gullstrand coordinates fail. arXiv
**2020**, arXiv:2006.10827. [Google Scholar] - Nielsen, A.B.; Visser, M. Production and decay of evolving horizons. Class. Quantum Grav.
**2006**, 23, 4637–4658. [Google Scholar] [CrossRef] - Abreu, G.; Visser, M. Kodama time: Geometrically preferred foliations of spherically symmetric spacetimes. Phys. Rev. D
**2010**, 82, 044027. [Google Scholar] [CrossRef] [Green Version] - Faraoni, V. Cosmological and Black Hole Apparent Horizons; Lecture Notes in Physics Series vol. 907; Springer: New York, NY, USA, 2015. [Google Scholar]
- Giusti, A.; Faraoni, V. Quasilocal mass in scalar-tensor gravity: Spherical symmetry. arXiv
**2020**, arXiv:2005.04770. [Google Scholar] [CrossRef] - Misner, C.W.; Sharp, D.H. Relativistic Equations for Adiabatic, Spherically Symmetric Gravitational Collapse. Phys. Rev.
**1964**, 136, B571. [Google Scholar] [CrossRef] - Hernandez, W.C.; Misner, C.W. Observer Time as a Coordinate in Relativistic Spherical Hydrodynamics. Astrophys. J.
**1966**, 143, 452. [Google Scholar] [CrossRef] - Hawking, S. Gravitational Radiation in an Expanding Universe. J. Math. Phys.
**1968**, 9, 598–604. [Google Scholar] [CrossRef] - Hayward, S.A. Quasilocal gravitational energy. Phys. Rev. D
**1994**, 49, 831–839. [Google Scholar] [CrossRef] [Green Version] - Hayward, S.A. Gravitational energy in spherical symmetry. Phys. Rev. D
**1996**, 53, 1938–1949. [Google Scholar] [CrossRef] [Green Version] - Bondi, H.; Kilmister, C.W. Note on Schiff’s Paper on Relativity. Am. J. Phys.
**1960**, 28, 508. [Google Scholar] [CrossRef] - Jacobson, T. When is g
_{tt}g_{rr}= −1? Class. Quantum Grav.**2007**, 24, 5717. [Google Scholar] [CrossRef] - Barriola, M.; Vilenkin, A. Gravitational Field of a Global Monopole. Phys. Rev. Lett.
**1989**, 63, 341–343. [Google Scholar] [CrossRef] [PubMed] - Guendelman, E.I.; Rabinowitz, A. Gravitational field of a hedgehog and the evolution of vacuum bubbles. Phys. Rev. D
**1991**, 44, 3152–3158. [Google Scholar] [CrossRef] - Kodama, H. Conserved Energy Flux for the Spherically Symmetric System and the Backreaction Problem in the Black Hole Evaporation. Prog. Theor. Phys.
**1980**, 63, 1217–1228. [Google Scholar] [CrossRef] - Geroch, R. Limits of spacetimes. Commun. Math. Phys.
**1969**, 13, 180–193. [Google Scholar] [CrossRef] - Paiva, F.M.; Reboucas, M.; MacCallum, M. On limits of spacetimes—A coordinate-free approach. Class. Quantum Grav.
**1993**, 10, 1165. [Google Scholar] [CrossRef] [Green Version] - Paiva, F.M.; Romero, C. The limits of Brans-Dicke spacetimes: A coordinate-free approach. Gen. Relat. Gravit.
**1993**, 25, 1305–1317. [Google Scholar] [CrossRef] [Green Version]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Faraoni, V.; Giusti, A.
Unsettling Physics in the Quantum-Corrected Schwarzschild Black Hole. *Symmetry* **2020**, *12*, 1264.
https://doi.org/10.3390/sym12081264

**AMA Style**

Faraoni V, Giusti A.
Unsettling Physics in the Quantum-Corrected Schwarzschild Black Hole. *Symmetry*. 2020; 12(8):1264.
https://doi.org/10.3390/sym12081264

**Chicago/Turabian Style**

Faraoni, Valerio, and Andrea Giusti.
2020. "Unsettling Physics in the Quantum-Corrected Schwarzschild Black Hole" *Symmetry* 12, no. 8: 1264.
https://doi.org/10.3390/sym12081264