Numerical Simulation of Dendritic Pattern Formation in an Isotropic Crystal Growth Model on Curved Surfaces
Abstract
:1. Introduction
2. Mathematical Model
3. Numerical Solution
4. Numerical Results
4.1. Crystal Growth on Sphere Surface
4.1.1. Effect of Time Step Size
4.1.2. Effect of Mesh Size
4.1.3. Effect of Curvature
4.1.4. Effect of Undercooling Parameter
4.1.5. Effect of Radius r
4.2. Crystal Growth on Ellipsoid Surface
4.3. Crystal Growth on Torus Surface
4.4. Crystal Growth on Complex Surface
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y.J. A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 2001, 169, 708–759. [Google Scholar] [CrossRef] [Green Version]
- Bihr, T.; Sadafi, F.Z.; Seifert, U.; Taylor, R.K.; Smith, A.S. Radial growth in 2d revisited: The effect of finite density, binding affinity, reaction rates, and diffusion. Adv. Mater. Interfaces 2017, 4, 1600310. [Google Scholar] [CrossRef] [Green Version]
- Gibou, F.; Fedkiw, R.; Caflisch, R.; Osher, S. A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput. 2002, 19, 183–199. [Google Scholar] [CrossRef]
- Li, Y.; Luo, C.; Xia, B.; Kim, J. An efficient linear second order unconditionally stable direct discretization method for the phase-field crystal equation on surfaces. Appl. Math. Model. 2019, 67, 477–490. [Google Scholar] [CrossRef]
- Chen, C.C.; Lan, C.W. Efficient adaptive three-dimensional phase-field simulation of dendritic crystal growth from various supercoolings using rescaling. J. Cryst. Growth 2009, 311, 702–706. [Google Scholar] [CrossRef]
- Ghoneim, A.Y. A smoothed particle hydrodynamics-phase field method with radial basis functions and moving least squares for meshfree simulation of dendritic solidification. Appl. Math. Model. 2020, 77, 1704–1741. [Google Scholar] [CrossRef]
- Cartalade, A.; Younsi, A.; Plapp, M. Lattice Boltzmann simulations of 3D crystal growth: Numerical schemes for a phase-field model with anti-trapping current. Comput. Math. Appl. 2016, 71, 1784–1798. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Han, D. Linearly first-and second-order, unconditionally energy stable schemes for the phase field crystal model. J. Comput. Phys. 2017, 330, 1116–1134. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhao, J.; Wang, Q. Energy and entropy preserving numerical approximations of thermodynamically consistent crystal growth models. J. Comput. Phys. 2019, 382, 202–220. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Zhao, J.; Wang, Q. A linear energy and entropy-production-rate preserving scheme for thermodynamically consistent crystal growth models. Appl. Math. Lett. 2019, 98, 142–148. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Q.; Yang, X. Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Meth. Eng. 2017, 110, 279–300. [Google Scholar] [CrossRef]
- Meca, E.; Shenoy, V.B.; Lowengrub, J. Phase-field modeling of two-dimensional crystal growth with anisotropic diffusion. Phys. Rev. E 2013, 88, 052409. [Google Scholar] [CrossRef] [PubMed]
- Yang, X. Efficient linear, stabilized, second-order time marching schemes for an anisotropic phase field dendritic crystal growth model. Comput. Methods Appl. Mech. Eng. 2019, 347, 316–339. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, C.; Yang, X. A novel decoupled and stable scheme for an anisotropic phase-field dendritic crystal growth model. Appl. Math. Lett. 2019, 95, 122–129. [Google Scholar] [CrossRef]
- Kobayashi, R. Modeling and numerical simulations of dendritic crystal growth. Physica D 1993, 63, 410–423. [Google Scholar] [CrossRef]
- Lin, H.K.; Chen, C.C.; Lan, C.W. Adaptive three-dimensional phase-field modeling of dendritic crystal growth with high anisotropy. J. Cryst. Growth 2011, 318, 51–54. [Google Scholar] [CrossRef]
- Li, Y.; Lee, H.G.; Kim, J. A fast, robust, and accurate operator splitting method for phase-field simulations of crystal growth. J. Cryst. Growth 2011, 321, 176–182. [Google Scholar] [CrossRef]
- García, N.A.; Register, R.A.; Vega, D.A.; Gómez, L.R. Crystallization dynamics on curved surfaces. Phys. Rev. E 2013, 88, 012306. [Google Scholar] [CrossRef] [Green Version]
- Ren, B.; Huang, J.; Lin, M.C.; Hu, S.M. Controllable dendritic crystal simulation using orientation field. Comput. Graph. Forum 2018, 37, 485–495. [Google Scholar] [CrossRef]
- Xu, G. Discrete Laplace–Beltrami operators and their convergence. Comput. Aided Geom. Des. 2004, 21, 767–784. [Google Scholar] [CrossRef]
- Güler, E.; Hacısalihoğlu, H.H.; Kim, Y.H. The Gauss map and the third Laplace–Beltrami operator of the rotational hypersurface in 4-space. Symmetry 2018, 10, 398. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.G. Numerical simulation of pattern formation on surfaces using an efficient linear second-order method. Symmetry 2019, 11, 1010. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.K.; Cassoni, R.P.; MacArthur, C.D. Aircraft anti-icing and de-icing techniques and modeling. J. Aircr. 1996, 33, 841–854. [Google Scholar] [CrossRef]
- Langer, J.S. Directions in Condensed Matter Physics; World Scientific: Singapore, 1986; pp. 164–186. [Google Scholar]
- Karma, A.; Rappel, W.J. Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E 1996, 53, 3017–3020. [Google Scholar] [CrossRef]
- Meyer, M.; Desbrun, M.; Schröder, P.; Barr, A.H. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. In Visualization and Mathematics III; Springer: Berlin, Germany, 2003; pp. 35–57. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.; Park, J.; Wang, J.; Lee, C.; Kim, J. Numerical Simulation of Dendritic Pattern Formation in an Isotropic Crystal Growth Model on Curved Surfaces. Symmetry 2020, 12, 1155. https://doi.org/10.3390/sym12071155
Yoon S, Park J, Wang J, Lee C, Kim J. Numerical Simulation of Dendritic Pattern Formation in an Isotropic Crystal Growth Model on Curved Surfaces. Symmetry. 2020; 12(7):1155. https://doi.org/10.3390/sym12071155
Chicago/Turabian StyleYoon, Sungha, Jintae Park, Jian Wang, Chaeyoung Lee, and Junseok Kim. 2020. "Numerical Simulation of Dendritic Pattern Formation in an Isotropic Crystal Growth Model on Curved Surfaces" Symmetry 12, no. 7: 1155. https://doi.org/10.3390/sym12071155
APA StyleYoon, S., Park, J., Wang, J., Lee, C., & Kim, J. (2020). Numerical Simulation of Dendritic Pattern Formation in an Isotropic Crystal Growth Model on Curved Surfaces. Symmetry, 12(7), 1155. https://doi.org/10.3390/sym12071155