RETRACTED: Application of Symmetry Law in Numerical Modeling of Hydraulic Fracturing by Finite Element Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Governing Equations
2.2. Numerical Procedure
3. Results
3.1. Volumetric Flux Rate
3.2. Pressure–Time Curve
3.3. Fracture Opening Profile
3.4. Pressure Drop through Fractures
4. Discussion
- ✓
- It is assumed that the distribution of different properties, such as porosity, permeability, and saturation, is uniform in the reservoir.
- ✓
- The rock mechanical behavior is assumed elastoplastic, and it is assumed that the layers are continuous without any cracks and natural fractures, in which finite element method can be used.
- ✓
- Moreover, due to the importance of the top and bottom reservoir layers and the expansion or non-expansion of hydraulic fractures in them, sufficient information about the involved layers is also required.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahoney, R.P.; Soane, D.S.; Herring, M.K.; Kincaid, K.P. Self-Suspending Proppants for Hydraulic Fracturing. U.S. Patents Application No. 9,315,721 B2, 19 April 2016. [Google Scholar]
- Rabbani, E.; Davarpanah, A.; Memariani, M. An experimental study of acidizing operation performances on the wellbore productivity index enhancement. J. Pet. Explor. Prod. Technol. 2018, 8, 1243–1253. [Google Scholar]
- Vengosh, A.; Kondash, A.; Harkness, J.; Lauer, N.; Warner, N.; Darrah, T.H. The geochemistry of hydraulic fracturing fluids. Procedia Earth Planet. Sci. 2017, 17, 21–24. [Google Scholar] [CrossRef]
- Davarpanah, A. A feasible visual investigation for associative foam >⧹ polymer injectivity performances in the oil recovery enhancement. Eur. Polym. J. 2018, 105, 405–411. [Google Scholar] [CrossRef]
- Davarpanah, A.; Mirshekari, B. Experimental study and field application of appropriate selective calculation methods in gas lift design. Pet. Res. 2018, 3, 239–247. [Google Scholar] [CrossRef]
- Davarpanah, A.; Mirshekari, B. A mathematical model to evaluate the polymer flooding performances. Energy Rep. 2019, 5, 1651–1657. [Google Scholar] [CrossRef]
- Davarpanah, A.; Mirshekari, B.; Jafari Behbahani, T.; Hemmati, M. Integrated production logging tools approach for convenient experimental individual layer permeability measurements in a multi-layered fractured reservoir. J. Pet. Explor. Prod. Technol. 2018, 8, 743–751. [Google Scholar] [CrossRef]
- Pan, F.; Zhang, Z.; Zhang, X.; Davarpanah, A. Impact of anionic and cationic surfactants interfacial tension on the oil recovery enhancement. Powder Technol. 2020, 373, 93–98. [Google Scholar] [CrossRef]
- Guo, J.; Luo, B.; Lu, C.; Lai, J.; Ren, J. Numerical investigation of hydraulic fracture propagation in a layered reservoir using the cohesive zone method. Eng. Fract. Mech. 2017, 186, 195–207. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Yuan, B.; Yin, S. In-situ stresses controlling hydraulic fracture propagation and fracture breakdown pressure. J. Pet. Sci. Eng. 2018, 164, 164–173. [Google Scholar] [CrossRef]
- Zeng, Q.-D.; Yao, J.; Shao, J. Numerical study of hydraulic fracture propagation accounting for rock anisotropy. J. Pet. Sci. Eng. 2018, 160, 422–432. [Google Scholar] [CrossRef]
- Davarpanah, A. Feasible analysis of reusing flowback produced water in the operational performances of oil reservoirs. Environ. Sci. Pollut. Res. 2018, 25, 35387–35395. [Google Scholar] [CrossRef] [PubMed]
- Davarpanah, A.; Shirmohammadi, R.; Mirshekari, B.; Aslani, A. Analysis of hydraulic fracturing techniques: Hybrid fuzzy approaches. Arab. J. Geosci. 2019, 12, 402. [Google Scholar] [CrossRef]
- Missimer, T.M.; Maliva, R.G. Hydraulic Fracturing in Southern Florida: A Critical Analysis of Potential Environmental Impacts. Nat. Resour. Res. 2020, 1–27. [Google Scholar] [CrossRef]
- Wu, Z. Analytical Fracture Models for Overall Hydraulic Fracturing Reservoirs. Int. J. Oil Gas Coal Eng. 2019, 7, 13. [Google Scholar] [CrossRef]
- Davarpanah, A.; Mirshekari, B. Mathematical modeling of injectivity damage with oil droplets in the waste produced water re-injection of the linear flow. Eur. Phys. J. Plus 2019, 134, 180. [Google Scholar] [CrossRef]
- Flekkøy, E.G.; Malthe-Sørenssen, A.; Jamtveit, B. Modeling hydrofracture. J. Geophys. Res. Solid Earth 2002, 107, ECV 1-1–ECV 1-11. [Google Scholar] [CrossRef]
- Yan, C.; Zheng, H. FDEM-flow3D: A 3D hydro-mechanical coupled model considering the pore seepage of rock matrix for simulating three-dimensional hydraulic fracturing. Comput. Geotech. 2017, 81, 212–228. [Google Scholar] [CrossRef]
- Fu, W.; Savitski, A.A.; Damjanac, B.; Bunger, A.P. Three-dimensional lattice simulation of hydraulic fracture interaction with natural fractures. Comput. Geotech. 2019, 107, 214–234. [Google Scholar] [CrossRef]
- Lecampion, B.; Bunger, A.; Zhang, X. Numerical methods for hydraulic fracture propagation: A review of recent trends. J. Nat. Gas Sci. Eng. 2018, 49, 66–83. [Google Scholar] [CrossRef]
- Brandes, C.; Tanner, D.C. Chapter 2—Fault mechanics and earthquakes. In Understanding Faults; Tanner, D., Brandes, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 11–80. [Google Scholar] [CrossRef]
- Al-Busaidi, A.; Hazzard, J.F.; Young, R.P. Distinct element modeling of hydraulically fractured Lac du Bonnet granite. J. Geophys. Res. Solid Earth 2005, 110. [Google Scholar] [CrossRef]
- Ghani, I.; Koehn, D.; Toussaint, R.; Passchier, C.W. Dynamic Development of Hydrofracture. Pure Appl. Geophys. 2013, 170, 1685–1703. [Google Scholar] [CrossRef]
- Kumari, W.; Ranjith, P.; Perera, M.; Li, X.; Li, L.; Chen, B.; Isaka, B.A.; De Silva, V. Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks. Fuel 2018, 230, 138–154. [Google Scholar] [CrossRef]
- Sarvaramini, E.; Dusseault, M.B.; Gracie, R. Characterizing the stimulated reservoir volume during hydraulic fracturing-connecting the pressure fall-off phase to the geomechanics of fracturing. J. Appl. Mech. 2018, 85, 101006. [Google Scholar] [CrossRef]
- Haghi, A.; Chalaturnyk, R.; Ghobadi, H. The state of stress in SW Iran and implications for hydraulic fracturing of a naturally fractured carbonate reservoir. Int. J. Rock Mech. Min. Sci. 2018, 105, 28–43. [Google Scholar] [CrossRef]
- Jenkins, A.; Fathi, E.; Belyadi, F. Stress field behavior induced by hydraulic fracture in shale reservoirs: A practical view on cluster spacing. J. Nat. Gas Sci. Eng. 2017, 48, 186–196. [Google Scholar] [CrossRef]
- Narasingam, A.; Siddhamshetty, P.; Sang-Il Kwon, J. Temporal clustering for order reduction of nonlinear parabolic PDE systems with time-dependent spatial domains: Application to a hydraulic fracturing process. AIChE J. 2017, 63, 3818–3831. [Google Scholar] [CrossRef]
- Karakin, A.; Ramazanov, M.; Borisov, V. Incompletely Coupled Equations of Hydraulic Fracturing. Math. Models Comput. Simul. 2018, 10, 45–58. [Google Scholar] [CrossRef]
- Liu, C.; Shen, Z.; Gan, L.; Jin, T.; Zhang, H.; Liu, D. A hybrid finite volume and extended finite element method for hydraulic fracturing with cohesive crack propagation in quasi-brittle materials. Materials 2018, 11, 1921. [Google Scholar] [CrossRef]
- Zhang, F.; Damjanac, B.; Maxwell, S. Investigating Hydraulic Fracturing Complexity in Naturally Fractured Rock Masses Using Fully Coupled Multiscale Numerical Modeling. Rock Mech. Rock Eng. 2019, 52, 5137–5160. [Google Scholar] [CrossRef]
- Zheng, H.; Pu, C.; Sun, C. Numerical investigation on the hydraulic fracture propagation based on combined finite-discrete element method. J. Struct. Geol. 2020, 130, 103926. [Google Scholar] [CrossRef]
- He, B.; Schuler, L.; Newell, P. A numerical-homogenization based phase-field fracture modeling of linear elastic heterogeneous porous media. Comput. Mater. Sci. 2020, 176, 109519. [Google Scholar] [CrossRef]
- Alotaibi, T.E.; Landis, C.M.; AlTammar, M.J. Phase-Field Modeling of Hydraulic Fracture Propagation in Mechanically Heterogeneous Formations. In Proceedings of the International Petroleum Technology Conference, Dhahran, Saudi Arabia, 13 January 2020; p. 15. [Google Scholar]
- Zielonka, M.G.; Searles, K.H.; Ning, J.; Buechler, S.R. Development and validation of fully-coupled hydraulic fracturing simulation capabilities. In Proceedings of the SIMULIA community conference, SCC2014, Pvovidence, RI, USA, 19–22 May 2014; pp. 19–21. [Google Scholar]
- Liu, F.; Gordon, P.A.; Valiveti, D.M. Modeling competing hydraulic fracture propagation with the extended finite element method. Acta Geotech. 2018, 13, 243–265. [Google Scholar] [CrossRef]
- Wang, X.; Shi, F.; Liu, H.; Wu, H. Numerical simulation of hydraulic fracturing in orthotropic formation based on the extended finite element method. J. Nat. Gas Sci. Eng. 2016, 33, 56–69. [Google Scholar] [CrossRef]
- Ji, L. Modeling Hydraulic Fracturing Fully Coupled with Reservoir Geomechanical Simulation. Ph.D. Thesis, University of Calgary, Galgary, AB, Canada, 2008. [Google Scholar]
- Guo, B. Petroleum Production Engineering, a Computer-Assisted Approach; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Feng, Q.; Jiang, Z.; Wang, S.; Zhang, G.; Qin, Y.; Xu, S.; Zhang, W. Optimization of reasonable production pressure drop of multi-stage fractured horizontal wells in tight oil reservoirs. J. Pet. Explor. Prod. Technol. 2019, 9, 1943–1951. [Google Scholar] [CrossRef]
- Gao, Q.; Cheng, Y.; Han, S.; Yan, C.; Jiang, L. Numerical modeling of hydraulic fracture propagation behaviors influenced by pre-existing injection and production wells. J. Pet. Sci. Eng. 2019, 172, 976–987. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Young Modulus (E) | GPa | 40.12 |
Poisson’s ratio () | Dimensionless | 0.3 |
Porosity () | % | 15 |
Permeability (k) | mD | 12 |
Rock Density () | kg/m3 | 2500 |
Fluid Density () | kg/m3 | 1120 |
Tension Strength (To) | MPa | 7.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Zhou, M.; Lu, W.; Davarpanah, A. RETRACTED: Application of Symmetry Law in Numerical Modeling of Hydraulic Fracturing by Finite Element Method. Symmetry 2020, 12, 1122. https://doi.org/10.3390/sym12071122
Sun S, Zhou M, Lu W, Davarpanah A. RETRACTED: Application of Symmetry Law in Numerical Modeling of Hydraulic Fracturing by Finite Element Method. Symmetry. 2020; 12(7):1122. https://doi.org/10.3390/sym12071122
Chicago/Turabian StyleSun, Shanhui, Meihua Zhou, Wei Lu, and Afshin Davarpanah. 2020. "RETRACTED: Application of Symmetry Law in Numerical Modeling of Hydraulic Fracturing by Finite Element Method" Symmetry 12, no. 7: 1122. https://doi.org/10.3390/sym12071122
APA StyleSun, S., Zhou, M., Lu, W., & Davarpanah, A. (2020). RETRACTED: Application of Symmetry Law in Numerical Modeling of Hydraulic Fracturing by Finite Element Method. Symmetry, 12(7), 1122. https://doi.org/10.3390/sym12071122