# Solving Higher-Order Boundary and Initial Value Problems via Chebyshev–Spectral Method: Application in Elastic Foundation

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Some Preliminaries

**Definition**

**1.**

**Theorem**

**1.**

**Remark**

**1.**

**Proposition**

**1.**

## 3. Outline of the Method for Boundary and Initial Value Problems

#### 3.1. Operational Matrix of Derivative

**Theorem**

**2.**

**Proof.**

**Theorem**

**3.**

**Proof.**

#### 3.2. Description of the Proposed Method for BVPs and IVPs

Algorithm 1: The construction of proposed method for the boundary value problems (BVPs) |

Step 1. Input:$N,n,{c}_{{}_{N-i}},{a}_{i},{l}_{j},(i=0,\dots ,n,j=0,\dots ,n-1)$; $R\left(x\right)$; Step 2. Compute: ${b}_{k}=\frac{2{c}_{k}}{\pi}{\int}_{-1}^{1}R\left(x\right){T}_{k}\left(x\right){(1-{x}^{2})}^{-\frac{1}{2}}dx$;for $k=0,\dots ,N-n$. Step 3. Compute the matrix ${\mathbf{E}}_{N}$ from matrix $\mathbf{E}$.Step 4. Compute:4.1. ${\mathbf{E}}_{N}^{i}$ from step 3, (i=2, …, n).4.2. ${\mathbf{X}}_{n}$ based on $\mathbf{X}$ from (22).Step 5. Set:
$$\mathbf{B}=\left(\right)open="["\; close="]">\begin{array}{cccc}{\beta}_{00}& {\beta}_{01}& \dots & {\beta}_{0,n-1}\\ {\beta}_{10}& {\beta}_{11}& \dots & {\beta}_{1,n-1}\\ \vdots & \vdots & \vdots & \vdots \\ {\beta}_{n-1,0}& {\beta}_{n-1,1}& \dots & {\beta}_{n-1,n-1}\end{array}.$$
Step 6. Obtain the solution ${\mathbf{V}}_{N}$ from the system of (24) and set: ${u}_{N}\left(x\right)={\mathbf{T}}_{N,x}{\mathbf{V}}_{N}^{T}$. |

#### Construction of the Proposed Method for IVPs

**Remark**

**2.**

## 4. Numerical Results

**Example 1.**Consider the third-order boundary value problem

**Example 2.**Consider the first-order initial value problem:

**Example 3.**Consider an engineering problem of the fourth-order initial value problem which is arising in elastic foundation [20] as follows,

**Example 4.**Consider the following fifth-order boundary value problem,

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Agarwal, R.P.; ÓRegan, D. Ordinary and Partial Differential Equations with Special Functions, Fourier Series, and Boundary Value Problems; Springer: New York, NY, USA, 2009. [Google Scholar]
- Aslana, E.C.; Inc, M.; Al-Qurashi, M.M.; Baleanuc, D. On numerical solutions of time-fraction generalized Hirota Satsuma coupled KdV equation. J. Nonlinear Sci. Appl.
**2017**, 10, 724–733. [Google Scholar] [CrossRef][Green Version] - Bulut, H.; Yel, G.; Baskonus, H.M. An application of improved Bernoulli sub-equation function method to the nonlinear time-fractional Burgers equation. Turk. J. Math. Comput. Sci.
**2016**, 5, 1–7. [Google Scholar] - Chapra, S.C.; Canale, R.P. Numerical Methods for Engineers, 7th ed.; McGraw-Hill Education: New York, NY, USA, 2010. [Google Scholar]
- Hashemizadeh, E.; Mahmoudi, F. Numerical solution of Painlevé equation by Chebyshev polynomials. J. Interpolat. Approx. Sci. Comput.
**2016**, 2016, 26–31. [Google Scholar] [CrossRef] - Lotfi, T.; Rashidi, M.; Mahdiani, K. A posteriori analysis: Error estimation for the eighth order boundary value problems in reproducing Kernel space. Numer. Algor.
**2016**, 73, 391–406. [Google Scholar] [CrossRef] - Lotfi, T. A new optimal method of fourth-order convergence for solving nonlinear equations. Int. J. Ind. Math.
**2014**, 6, 121–124. [Google Scholar] - Qurashi, M.M.; Yusuf, A.; Aliyu, A.I.; Inc, M. Optical and other solitons for the fourth-order dispersive nonlinear Schrödinger equation with dual-power law nonlinearity. Superlattices Microstruct.
**2017**, 105, 183–197. [Google Scholar] [CrossRef] - Rehman, M.; Khan, A.K. A numerical method for solving boundary value problems for fractional differential equations. Appl. Math. Model.
**2012**, 36, 894–907. [Google Scholar] [CrossRef] - Yusuf, A.; Aliyu, A.I.; Baleanu, D. Soliton structures to some time-fractional nonlinear differential equations with conformable derivative. Opt. Quant. Electron.
**2018**, 50, 20. [Google Scholar] [CrossRef] - Zaky, M.A.; Baleanu, D.; Alzaidy, J.F.; Hashemizadeh, E. Operational matrix approach for solving the variable-order nonlinear Galilei invariant advection–diffusion equation. Adv. Differ. Equ.
**2018**, 2018, 102. [Google Scholar] [CrossRef][Green Version] - El-Daou, M.K.; Ortiz, E.L. The weighted subspace of the Tau method and orthogonal collocation. J. Math. Anal. Appl.
**2007**, 326, 622–631. [Google Scholar] [CrossRef][Green Version] - El-Daou, M.K.; Ortiz, E.L. The Tau method as an analytic tool in the discussion of equivalence results across numerical methods. Computing
**1998**, 60, 365–376. [Google Scholar] - Froes Bunchaft, M.E. Some extensions of the Lanczos-Ortiz theory of canonical polynomials in the Tau method. Math. Comput.
**2018**, 66, 609–621. [Google Scholar] [CrossRef][Green Version] - Ghoreishi, F.; Hadizadeh, M. Numerical computation of the Tau approximation for the Volterra- Hammerstein integral equations. Numer. Algor.
**2009**, 52, 541–559. [Google Scholar] [CrossRef] - Ortiz, E.L. The Tau Method. SIAM J. Numer. Anal.
**1969**, 6, 480–492. [Google Scholar] [CrossRef] - Xie, W.-C. Differential Equations for Engineers, 1st ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Attary, M. An extension of the Shannon Wavelets for numerical Solution of Integro-Differential Equations. In Advances in Real and Complex Analysis with Applications; Birkhäuser: Basel, Switzerland, 2017; pp. 277–288. [Google Scholar]
- Hashemizadeh, E.; Mahmoudi, F. A Numerical Approach for the Solution of Nonlinear Boundary Value Problems Arising in Biology Via Shifted Jacobi Operational Matrix. Adv. Environ. Biol.
**2014**, 8, 1415–1419. [Google Scholar] - Hussain, K.; Ismail, F.; Senu, N. Solving directly special fourth-order ordinary differential equations using Runge-kutta type method. J. Comput. Appl. Math.
**2016**, 306, 179–199. [Google Scholar] [CrossRef] - Lotfi, T.; Mahdiani, K. Numerical solution of boundary value problem by using Wavelet-Galerkin method. Math. Sci.
**2007**, 1, 7–18. [Google Scholar] - Maleknejad, K.; Hadizadeh, M.; Attary, M. On the approximate solution of integro-differential equations arising in oscillating magnetic fields. Appl. Math.
**2013**, 58, 595–607. [Google Scholar] [CrossRef][Green Version] - Mason, J.; Handscomb, D. Chebyshev Polynomials; Chapman and Hal- l/CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Wolfe, M. The numerical solution of non-singular integral and integro- differential equations by iteration with Chebyshev series. Comput. J.
**1969**, 12, 193–196. [Google Scholar] [CrossRef][Green Version] - Lessard, J.; Reinhardt, C. Rigorous numerics for nonlinear differential equations using Chebyshev series. SIAM J. Numer. Anal.
**2013**, 52, 1–22. [Google Scholar] [CrossRef][Green Version] - El-Gindy, T.M.; El-Hawary, H.M.; Salim, M.S.; El-Kady, M. A Chebyshev approximation for solving optimal control problems. Comput. Math. Appl.
**1995**, 29, 35–45. [Google Scholar] [CrossRef][Green Version] - Vlassenbroeck, J.; Van Dooren, R. A Chebyshev technique for solving nonlinear optimal control problems. IEEE Trans. Automat. Control
**1988**, 33, 333–340. [Google Scholar] [CrossRef] - Mezzadri, F.; Galligani, E. A Chebyshev technique for the solution of optimal control problems with nonlinear programming methods. Math. Comp. Simulat.
**2016**, 121, 95–108. [Google Scholar] [CrossRef]

N | Maximal Errors |
---|---|

Presented Method | |

7 | $9.12\times {10}^{-2}$ |

8 | $5.74\times {10}^{-3}$ |

10 | $1.22\times {10}^{-4}$ |

12 | $1.58\times {10}^{-6}$ |

15 | $1.49\times {10}^{-9}$ |

N | Maximal Errors | ||
---|---|---|---|

Presented Method | Method in [3] | Method in [9] | |

6 | $1.17\times {10}^{-2}$ | $1.45\times {10}^{-2}$ | $2.7\times {10}^{-2}$ |

8 | $9.09\times {10}^{-3}$ | $2.1\times {10}^{-3}$ | $3.8\times {10}^{-3}$ |

11 | $4.48\times {10}^{-5}$ | $2.03\times {10}^{-4}$ | $4.11\times {10}^{-4}$ |

15 | $1.66\times {10}^{-8}$ | $-$ | $-$ |

18 | $4.93\times {10}^{-12}$ | $-$ | $-$ |

N | Maximal Errors | |
---|---|---|

Exp. 3 | Exp. 4 | |

11 | $1.54\times {10}^{-9}$ | $2.63\times {10}^{-3}$ |

13 | $5.85\times {10}^{-14}$ | $4.11\times {10}^{-5}$ |

15 | $3.64\times {10}^{-15}$ | $5.15\times {10}^{-7}$ |

17 | $1.27\times {10}^{-16}$ | $5.01\times {10}^{-9}$ |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Agarwal, P.; Attary, M.; Maghasedi, M.; Kumam, P.
Solving Higher-Order Boundary and Initial Value Problems via Chebyshev–Spectral Method: Application in Elastic Foundation. *Symmetry* **2020**, *12*, 987.
https://doi.org/10.3390/sym12060987

**AMA Style**

Agarwal P, Attary M, Maghasedi M, Kumam P.
Solving Higher-Order Boundary and Initial Value Problems via Chebyshev–Spectral Method: Application in Elastic Foundation. *Symmetry*. 2020; 12(6):987.
https://doi.org/10.3390/sym12060987

**Chicago/Turabian Style**

Agarwal, Praveen, Maryam Attary, Mohammad Maghasedi, and Poom Kumam.
2020. "Solving Higher-Order Boundary and Initial Value Problems via Chebyshev–Spectral Method: Application in Elastic Foundation" *Symmetry* 12, no. 6: 987.
https://doi.org/10.3390/sym12060987