# Magic Three-Qubit Veldkamp Line and Veldkamp Space of the Doily

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Basic Glossary

## 3. Veldkamp Space of the Doily

## 4. Three Off-Doily Sectors of the Magic Veldkamp Line and the Doily’s Veldkamp Space

#### 4.1. Grids and Hyperbolic Sector

#### 4.2. Ovoids and Elliptic Sector

#### 4.3. Perp-Sets and Parabolic Sector

#### 4.4. Sectors Image of the Doily’s Veldkamp Space

## 5. Towards Parapolar Spaces

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Holweck, F. Geometric constructions over $\mathcal{C}$ and ${\mathcal{F}}_{2}$ for quantum information. In Quantum Physics and Geometry; Ballico, E., Bernardi, A., Carusotto, I., Mazzucchi, S., Moretti, V., Eds.; Lecture Notes of the Unione Matematica Italiana; Springer Nature: Cham, Switzerland, 2019; Volume 25, pp. 87–124. [Google Scholar]
- Keppens, D. On the history of ring geometry (with a thematical overview of literature). Mitt. Math. Ges. Hambg.
**2019**, 39, 99. [Google Scholar] - Planat, M.; Saniga, M. On the Pauli graph of N-qudits. Quantum Inf. Comput.
**2008**, 8, 127. [Google Scholar] - Lévay, P.; Holweck, F.; Saniga, M. The magic three-qubit Veldkamp line: A finite geometric underpinning for form theories of gravity and black hole entropy. Phys. Rev. D
**2017**, 96, 026018. [Google Scholar] [CrossRef] [Green Version] - Lévay, P.; Szabó, Z. Mermin pentagrams arising from Veldkamp lines for three qubits. J. Phys. Math. Theor.
**2017**, 50, 095201. [Google Scholar] [CrossRef] [Green Version] - Saniga, M. A combinatorial Grassmannian representation of the magic three-qubit Veldkamp line. Entropy
**2017**, 19, 556. [Google Scholar] [CrossRef] [Green Version] - Lévay, P.; Saniga, M.; Vrana, P.; Pracna, P. Black hole entropy and finite geometry. Phys. Rev. D
**2009**, 79, 084036. [Google Scholar] [CrossRef] [Green Version] - Borsten, L.; Duff, M.J.; Lévay, P. The black-hole/qubit correspondence: An up-to-date review. Class. Quantum Gravity
**2012**, 29, 224008. [Google Scholar] [CrossRef] [Green Version] - Green, R.M. Combinatorics of Minuscule Representations. Cambridge Tracts in Mathematics, 199; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Payne, S.E.; Thas, J.A. Finite Generalized Quadrangles; Pitman: Boston, MA, USA, 1984. [Google Scholar]
- Van Maldeghem, H. Generalized Polygons; Birkhäuser: Basel, Switzerland, 1998. [Google Scholar]
- Cameron, P.J. Projective and Polar Spaces. QMW Maths Notes, 13; School of Mathematical Sciences, Queen Mary and Westfield College: London, UK, 1992. [Google Scholar]
- Buekenhout, F.; Cohen, A.M. Diagram Geometry: Related to Classical Groups and Buildings; Springer: Berlin, Germany, 2013. [Google Scholar]
- Saniga, M.; Planat, M.; Pracna, P.; Havlicek, H. The Veldkamp space of two-qubits. Symmetry Integr. Geom. Methods Appl.
**2007**, 3, 75. [Google Scholar] [CrossRef] - Saniga, M.; Lévay, P.; Planat, M.; Pracna, P. Geometric hyperplanes of the near hexagon L
_{3}×GQ(2,2). Lett. Math. Phys.**2010**, 91, 93. [Google Scholar] [CrossRef] [Green Version] - Polster, B. A Geometrical Picture Book; Springer: New York, NY, USA, 1991. [Google Scholar]
- Cooperstein, B.N. A characterization of some Lie incidence structures. Geom. Dedicata
**1977**, 6, 205. [Google Scholar] [CrossRef] - Shult, E.E. Points and Lines: Characterizing the Classical Geometries; Universitext; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Kasikova, A.; Shult, E.E. Point-line characterizations of Lie incidence geometries. Adv. Geom.
**2002**, 2, 147. [Google Scholar] [CrossRef] [Green Version] - Cohen, A.M.; Cooperstein, B.N. A characterization of some geometries of exceptional Lie type. Geom. Dedicata
**1983**, 15, 73. [Google Scholar] [CrossRef] [Green Version] - Schillewaert, J.; Van Maldeghem, H. On the varieties of the second row of the split Freudenthal–Tits magic square. Ann. Inst. Fourier
**2017**, 67, 2265. [Google Scholar] [CrossRef] [Green Version] - Holweck, F.; Saniga, M.; Lévay, P. A notable relation between N-qubit and 2
^{N−1}-qubit Pauli groups via binary LGr(N,2N). Symmetry Integr. Geom. Methods Appl.**2014**, 10, 41. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**A model of ${\mathcal{Q}}^{+}(5,2)$ built around the doily (red); the nine lines (shown in bold) concurrent in an off-doily point (bold blue) cut the doily in a grid (bold red).

**Figure 2.**A model of ${\mathcal{Q}}^{-}(5,2)$ built around the doily (red); the five lines (shown in bold) concurrent in an off-doily point (bold blue) cut the doily in an ovoid (bold red).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Saniga, M.; Szabó, Z.
Magic Three-Qubit Veldkamp Line and Veldkamp Space of the Doily. *Symmetry* **2020**, *12*, 963.
https://doi.org/10.3390/sym12060963

**AMA Style**

Saniga M, Szabó Z.
Magic Three-Qubit Veldkamp Line and Veldkamp Space of the Doily. *Symmetry*. 2020; 12(6):963.
https://doi.org/10.3390/sym12060963

**Chicago/Turabian Style**

Saniga, Metod, and Zsolt Szabó.
2020. "Magic Three-Qubit Veldkamp Line and Veldkamp Space of the Doily" *Symmetry* 12, no. 6: 963.
https://doi.org/10.3390/sym12060963