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Abstract: A magic three-qubit Veldkamp line of W(5, 2), i.e., the line comprising a hyperbolic quadric
Q+(5, 2), an elliptic quadric Q−(5, 2) and a quadratic cone Q̂(4, 2) that share a parabolic quadric
Q(4, 2), the doily, is shown to provide an interesting model for the Veldkamp space of the doily.
The model is based on the facts that: (a) the 20 off-doily points of Q+(5, 2) form ten complementary
pairs, each corresponding to a unique grid of the doily; (b) the 12 off-doily points of Q−(5, 2) form
six complementary pairs, each corresponding to a unique ovoid of the doily; and (c) the 15 off-doily
points of Q̂(4, 2), disregarding the nucleus ofQ(4, 2), are in bijection with the 15 perp-sets of the doily.
These findings lead to a conjecture that also parapolar spaces can be relevant for quantum information.
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1. Introduction

Quantum information theory (QIT), an important branch of quantum physics, is the study of
how to integrate information theory with quantum mechanics, by studying how information can
be stored in (and/or retrieved from) a quantum mechanical system. Within the last ten to fifteen
years it has been gradually realized that finite geometries represent key mathematical concepts of
QIT. We here mention finite projective (Hjelmslev) planes, projective lines over certain modular
rings and rings of ternions, small generalized polygons (in particular the split Cayley hexagon of
order two), factor-group-generated symplectic and orthogonal polar spaces, affine polar spaces
of rank three and order two (in particular extended generalized quadrangles with lines of size
three), combinatorial Grassmannians, binary Segre varieties and, last but not least, Veldkamp spaces
of certain point-line incidence structures with three points per line; for the relevant literature,
see recent reviews by Holweck [1] and Keppens [2] aimed, respectively, at both physicists and
mathematicians. Among them, the unique triangle-free 153-configuration (out of 245,342 ones),
also known as the Cremona–Richmond configuration and in the sequel referred to as the doily,
acquires a special footing. This notable role of the doily stems from the fact that it is isomorphic
to three remarkable, conceptually-distinct point-line incidence structures, namely a symplectic
polar space of type W(3, 2) (whose subgeometries furnish simplest observable proofs of quantum
contextuality and justify the existence of the maximal sets of MUBs in the associated Hilbert space
of two-qubits [3]), an orthogonal parabolic polar space of type Q(4, 2) (being the core of the magic
three-qubit Veldkamp line of form theories of gravity [4–6]) and a generalized quadrangle of type
GQ(2, 2) (being a subquadrangle of GQ(2, 4) ∼= Q−(5, 2) that entails some important aspects of the
so-called black-hole/qubit correspondence [7,8]). Employing the concept of Veldkamp space of a
point-line incidence structure, this note aims at shedding some interesting light on how these three
geometrical settings are interrelated.
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2. Basic Glossary

We shall start with a well-known duad-syntheme model of the doily [9,10]. Given a six-element
set S = {1, 2, 3, 4, 5, 6}, let us call a two-element subset of S a duad, and a set of three duads forming
a partition of S a syntheme. The point-line incidence structure whose points are (6

2) = 15 duads and
whose lines are (6

2)(
4
2)(

2
2)/3! = 15 synthemes, with incidence being containment, is isomorphic to

the doily.
A generalized n-gon G; n ≥ 2, is a point-line incidence geometry which satisfies the following

two axioms [11]: (a) G does not contain any ordinary k-gons for 2 ≤ k < n and (b) given two points,
two lines, or a point and a line, there is at least one ordinary n-gon in G that contains both objects.
A finite generalized n-gon G is of order (s, t), s, t ≥ 1, if every line contains s + 1 points and every point
is contained in t + 1 lines; if s = t, we also say that G is of order s. A generalized 4-gon is also called a
generalized quadrangle (and abbreviated as GQ).

Next, we will also need particular types of four different kinds of finite polar spaces [12].
The symplectic polar space W(2N − 1, q), N ≥ 1, consisting of all the points of PG(2N − 1, q) together
with the totally isotropic subspaces in respect to the standard symplectic form

θ(x, y) = x1y2 − x2y1 + · · ·+ x2N−1y2N − x2Ny2N−1.

The hyperbolic orthogonal polar space Q+(2N − 1, q), N ≥ 1, formed by all the subspaces of
PG(2N − 1, q) that lie on a given nonsingular hyperbolic quadric, with the standard equation

x1x2 + x3x4 + . . . + x2N−1x2N = 0.

The elliptic orthogonal polar space Q−(2N + 1, q), N ≥ 1, featuring all points and subspaces of
PG(2N + 1, q) satisfying the standard equation

f (x1, x2) + x3x4 + · · ·+ x2N+1x2N+2 = 0,

where f is irreducible over GF(q). And, finally, the parabolic orthogonal polar space Q(2N, q), N ≥ 1,
formed by all points and subspaces of PG(2N, q) satisfying the standard equation

x1x2 + x3x4 + · · ·+ x2N−1x2N + x2
2N+1 = 0.

A projective subspace of maximal dimension is called a generator; all generators have the same
(vector) dimension r, which is called the rank of the polar space. The rank of each of the above-listed
cases is N.

Further, given a point-line incidence geometry Γ(P, L), a geometric hyperplane of Γ(P, L) is a
subset of its point set such that a line of the geometry is either fully contained in the subset or has with
it just a single point in common; if all the lines passing through a given point lie in the hyperplane,
the point in question is called deep. The Veldkamp space of Γ(P, L), V(Γ), is the space [13] in which a
point is a geometric hyperplane of Γ and a line is the collection H′H′′ of all geometric hyperplanes H
of Γ such that H′ ∩ H′′ = H′ ∩ H = H′′ ∩ H or H = H′, H′′, where H′ and H′′ are distinct points of
V(Γ). For a Γ(P, L) with three points on a line, all Veldkamp lines are of the form {H′, H′′, H′∆H′′}
where H′∆H′′ is the complement of symmetric difference of H′ and H′′, i.e., they form a vector space
over GF(2). In what follows we shall denote H′∆H′′ as H′ ⊕ H′′ and call it the Veldkamp sum of H′

and H′′.
Finally, a subset of the point-set of Γ(P, L) is called a subspace iff any line from L intersects it

in zero, one or all of its points. A subspace is called singular if any two of its points are collinear.
If p is a point, the symbol p⊥ denotes the set of all points collinear with it, including the point itself.
A point-line incidence structure Γ(P, L) is called a gamma space iff p⊥ is a subspace for every point
p ∈ P.
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3. Veldkamp Space of the Doily

As it is well known [14,15], the doily features three different types of geometric hyperplanes
(that is, Veldkamp points), namely six ovoids, fifteen perp-sets and ten grids. An ovoid is a set of
points such that each line is incident with exactly one point in it; hence, each ovoid of the doily has
five points. Using the duad-syntheme representation of the doily, it can be written as

oi = {{i, j}|j ∈ S \ {i}}, i ∈ S. (1)

A perp-set is the set of points collinear with a given point, the point inclusive. If the latter is {i, j},
and taking

{1, 2, 3, 4, 5, 6} = {i, j, k, l, m, n}

in some order, the corresponding perp-set pij reads

pij = {{i, j}; {k, l}, {k, m}, {k, n}, {l, m}, {l, n}, {m, n}}. (2)

Finally, the nine points of a grid, gijk (= glmn), can be represented as

gijk = {{a, b}|a ∈ {i, j, k} and b ∈ {l, m, n}}. (3)

It can readily be verified that pij = oi ⊕ oj and gijk = oi ⊕ oj⊕ ok. The doily contains 155 Veldkamp
lines that fall into five different families, having the following representatives

{pij, gikl , gjkl}, (4)

{pij, pkl , pmn}, (5)

{pij, pik, pjk}, (6)

{oi, pjk, gijk}, (7)

{oi, oj, pij}. (8)

4. Three Off-Doily Sectors of the Magic Veldkamp Line and the Doily’s Veldkamp Space

As already mentioned, a magic Veldkamp line of W(5, 2), the symplectic polar space behind the
generalized three-qubit Pauli group, consists of a hyperbolic quadric Q+(5, 2), an elliptic quadric
Q−(5, 2) and a quadratic cone Q̂(4, 2) that have the doily (∼= Q(4, 2)) in common [4]. Our focus
will be on the complements of the doily of the three constituents (to be called sectors in the sequel),
in particular on how the points in these sectors are related with geometric hyperplanes of the core doily.

4.1. Grids and Hyperbolic Sector

It is easy to show that the 20 off-doily points of the hyperbolic sector form ten complementary
pairs, the two points in any such pair being related to a particular grid of the doily. Let us label these
twenty points by three-element subsets of S = {1, 2, 3, 4, 5, 6} and let {a, b, c, i, j, k} be a partition of
S. Then the nine lines passing through the point abc are (In what follows we will use a short-hand
notation {a} = a, {a, b} = ab, etc.)

{abc, aij, ak}, {abc, aik, aj}, {abc, ajk, ai},

{abc, bij, bk}, {abc, bik, bj}, {abc, bjk, bi},

{abc, cij, ck}, {abc, cik, cj}, {abc, cjk, ci},
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and the nine lines through the complementary/conjugate point ijk read

{ijk, iab, ic}, {ijk, iac, ib}, {ijk, ibc, ia},

{ijk, jab, jc}, {ijk, jac, jb}, {ijk, jbc, ja},

{ijk, kab, kc}, {ijk, kac, kb}, {ijk, kbc, ka}.

Comparing these two sets of equations with Equation (3) we see that in both cases the lines cut
the core doily in the nine points of the same grid, namely the gabc one. Figure 1 illustrates this property
for two pairs of complementary points, 146/235 (top) and 136/245 (bottom).

13

25

36

12 56

15

3523

26

16

24

4614

45

34

145

345234

246

146

236

126156

135

235

134

245

346

124 456

256

136

125

356 123

13

25

36

12 56

15

3523

26

16

24

4614

45

34

145

345234

246

146

236

126156

135

235

134

245

346

124 456

256

136

125

356 123

Figure 1. A model of Q+(5, 2) built around the doily (red); the nine lines (shown in bold) concurrent
in an off-doily point (bold blue) cut the doily in a grid (bold red).
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4.2. Ovoids and Elliptic Sector

The twelve off-doily points of the elliptic sector form six complementary pairs. If we label these
points as 1, 2, ..., 6 and 1′, 2′, ..., 6′, and regard i and i′ as complementary/conjugate, then the five lines
through an off-doily point i or i′ are, respectively, of the form [16]

{i, j′, ij} or {i′, j, ij},

where j ∈ S, j′ ∈ S′, i 6= j and i′ 6= j′. Comparing these expressions with Equation (1) we see that the
five points of the doily in both cases correspond to the same ovoid, oi. Figure 2 serves as an illustration
of this fact for points 3 and 3’.
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Figure 2. A model of Q−(5, 2) built around the doily (red); the five lines (shown in bold) concurrent in
an off-doily point (bold blue) cut the doily in an ovoid (bold red).

4.3. Perp-Sets and Parabolic Sector

The parabolic sector comprises 16 points of which one has a special footing, being the nucleus of
Q(4, 2), that is the point common to all tangent hyperplanes of the quadric. If we label this nucleus by
123456 and the remaining 15 points by four-element subsets of S, klmn, then we can set up a natural
bijection between these 15 points and the 15 perp-sets of the doily, each being defined by its unique
deep point ij, in the form

{123456, klmn, ij}.
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4.4. Sectors Image of the Doily’s Veldkamp Space

Based on these findings, we can establish the following correspondence between the geometric
hyperplanes of the doily and off-doily points of the three sectors,

oi 7→ a pair of complementary points i/i′ in the elliptic sector,

pij 7→ a single point klmn in the parabolic sector,

gijk 7→ a pair of complementary points ijk/lmn in the hyperbolic sector,

from where we readily get the following sectorial counterparts of the five families of Veldkamp lines
of the doily (Equations (4)–(8), respectively)

{klmn, ikl/jmn, jkl/imn}, (9)

{klmn, ijmn, ijkl}, (10)

{klmn, jlmn, ilmn}, (11)

{i/i′, ilmn, ijk/lmn}, (12)

{i/i′, j/j′, klmn}. (13)

Note that the parabolic sector plays a (slightly) different role than the other two.

5. Towards Parapolar Spaces

There are several interesting implications of this correspondence. We will mention only one
that we find particularly intriguing as it concerns so-called parapolar spaces. A point-line incidence
geometry Γ(P, L) is called a parapolar space iff it satisfies the following properties [17,18]: (i) Γ is a
connected gamma space, (ii) for every line l ∈ L, l⊥ is not a singular subspace, and (iii) for every
pair of non-collinear points x, y ∈ P, x⊥ ∩ y⊥ is either empty, a single point, or a non-degenerate
polar space of rank at least two in which case (x, y) is called a polar pair. And it is the very last
property that makes a parapolar space to be a worth exploring concept in QIT. Indeed, as a grid of
the doily, being isomorphic to Q+(3, 2), is, like the doily itself, a non-degenerate polar space of rank
two, the corresponding pair of complementary points in the associated hyperbolic sector play in our
model the role of polar pairs. Moreover, if we regard W(5, 2) as being embedded in some parapolar
space like, for example, L3 ×W(5, 2) where L3 is a projective line of size three [19], then such a pair of
complementary points becomes a polar pair in this parapolar space. (We note that the last requirement
in axiom (iii) of the definition of a parapolar space puts aside pairs of complementary points in the
elliptic sector, because an ovoid of the doily is isomorphic toQ−(3, 2) and the latter is a non-degenerate
polar space of rank one only (see Section 2).)

The fact that the above-described three-qubit Veldkamp line setting for the Veldkamp space
of the doily leads rather straightforwardly to parapolar spaces should not come as a surprise.
Parapolar spaces were originally invented to characaterize Lie geometries associated with exceptional
algebraic groups [20], the groups that play a very important role in physics. Recently, they were also
linked with the properties of the Freudenthal–Tits Magic Square [21], which encodes relation between
a certain class of also physically-relevant semi-simple Lie algebras. In light of these facts, the eventual
occurrence of parapolar spaces in the context of QIT is a rather viable conjecture. To be more specific,
it will be worth exploring parapolar spaces with lines of size three and more, with a particular focus on:
dual polar spaces, grassmannian spaces, half-spin geometries, exceptional strong parapolar spaces of
type E6,1 and E7,7, metasymplectic spaces, exceptional long root geometries of type E6,2, E7,1 and E8,8,
and polar grassmannians; this should, for example, lead to a novel hierarchy of quantum contextual
configurations that are natural generalizations of the famous Mermin–Peres magic square (two-qubits)
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and the Mermin pentagram (three-qubits). Furthermore, a closer look at the structure of the exceptional
Moufang quadrangles of type F4 that appear as fixed point structures of involutions of metasymplectic
spaces over fields of characteristic two, together with examination of improperly embedded symplectic
quadrangles of type GQ(2, 2), may shed further light on ‘peculiarities’ of characteristic two in quantum
theory that were already noticed in the behavior of Lagrangian grassmannian mappings between
different N-qubit Pauli groups [22].

Author Contributions: Conceptualization and analysis, M.S. and Z.S.; writing—original draft preparation, M.S.;
funding acquisition, M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Slovak Research and Development Agency under the contract #
SK-FR-2017-0002, as well as by the Slovak VEGA Grant Agency, Project # 2/0004/20.

Acknowledgments: We thank all the three anonymous reviewers for their constructive comments/suggestions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Holweck, F. Geometric constructions over C and F2 for quantum information. In Quantum Physics and
Geometry; Ballico, E., Bernardi, A., Carusotto, I., Mazzucchi, S., Moretti, V., Eds.; Lecture Notes of the Unione
Matematica Italiana; Springer Nature: Cham, Switzerland, 2019; Volume 25, pp. 87–124.

2. Keppens, D. On the history of ring geometry (with a thematical overview of literature). Mitt. Math.
Ges. Hambg. 2019, 39, 99.

3. Planat, M.; Saniga, M. On the Pauli graph of N-qudits. Quantum Inf. Comput. 2008, 8, 127.
4. Lévay, P.; Holweck, F.; Saniga, M. The magic three-qubit Veldkamp line: A finite geometric underpinning for

form theories of gravity and black hole entropy. Phys. Rev. D 2017, 96, 026018. [CrossRef]
5. Lévay, P.; Szabó, Z. Mermin pentagrams arising from Veldkamp lines for three qubits. J. Phys. Math. Theor.

2017, 50, 095201. [CrossRef]
6. Saniga, M. A combinatorial Grassmannian representation of the magic three-qubit Veldkamp line. Entropy

2017, 19, 556. [CrossRef]
7. Lévay, P.; Saniga, M.; Vrana, P.; Pracna, P. Black hole entropy and finite geometry. Phys. Rev. D 2009,

79, 084036. [CrossRef]
8. Borsten, L.; Duff, M.J.; Lévay, P. The black-hole/qubit correspondence: An up-to-date review. Class. Quantum

Gravity 2012, 29, 224008. [CrossRef]
9. Green, R.M. Combinatorics of Minuscule Representations. Cambridge Tracts in Mathematics, 199; Cambridge University

Press: Cambridge, UK, 2013.
10. Payne, S.E.; Thas, J.A. Finite Generalized Quadrangles; Pitman: Boston, MA, USA, 1984.
11. Van Maldeghem, H. Generalized Polygons; Birkhäuser: Basel, Switzerland, 1998.
12. Cameron, P.J. Projective and Polar Spaces. QMW Maths Notes, 13; School of Mathematical Sciences, Queen Mary

and Westfield College: London, UK, 1992.
13. Buekenhout, F.; Cohen, A.M. Diagram Geometry: Related to Classical Groups and Buildings; Springer: Berlin,

Germany, 2013.
14. Saniga, M.; Planat, M.; Pracna, P.; Havlicek, H. The Veldkamp space of two-qubits. Symmetry Integr. Geom.

Methods Appl. 2007, 3, 75. [CrossRef]
15. Saniga, M.; Lévay, P.; Planat, M.; Pracna, P. Geometric hyperplanes of the near hexagon L3 × GQ(2, 2).

Lett. Math. Phys. 2010, 91, 93. [CrossRef]
16. Polster, B. A Geometrical Picture Book; Springer: New York, NY, USA, 1991.
17. Cooperstein, B.N. A characterization of some Lie incidence structures. Geom. Dedicata 1977, 6, 205. [CrossRef]
18. Shult, E.E. Points and Lines: Characterizing the Classical Geometries; Universitext; Springer: Berlin/Heidelberg,

Germany, 2011.
19. Kasikova, A.; Shult, E.E. Point-line characterizations of Lie incidence geometries. Adv. Geom. 2002, 2, 147.

[CrossRef]

http://dx.doi.org/10.1103/PhysRevD.96.026018
http://dx.doi.org/10.1088/1751-8121/aa56aa
http://dx.doi.org/10.3390/e19100556
http://dx.doi.org/10.1103/PhysRevD.79.084036
http://dx.doi.org/10.1088/0264-9381/29/22/224008
http://dx.doi.org/10.3842/SIGMA.2007.075
http://dx.doi.org/10.1007/s11005-009-0362-z
http://dx.doi.org/10.1007/BF00181461
http://dx.doi.org/10.1515/advg.2002.004


Symmetry 2020, 12, 963 8 of 8

20. Cohen, A.M.; Cooperstein, B.N. A characterization of some geometries of exceptional Lie type. Geom. Dedicata
1983, 15, 73. [CrossRef]

21. Schillewaert, J.; Van Maldeghem, H. On the varieties of the second row of the split Freudenthal–Tits magic
square. Ann. Inst. Fourier 2017, 67, 2265. [CrossRef]

22. Holweck, F.; Saniga, M.; Lévay, P. A notable relation between N-qubit and 2N−1-qubit Pauli groups via
binary LGr(N, 2N). Symmetry Integr. Geom. Methods Appl. 2014, 10, 41.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF00146968
http://dx.doi.org/10.5802/aif.3136
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Basic Glossary
	Veldkamp Space of the Doily
	Three Off-Doily Sectors of the Magic Veldkamp Line and the Doily's Veldkamp Space
	Grids and Hyperbolic Sector
	Ovoids and Elliptic Sector
	Perp-Sets and Parabolic Sector
	Sectors Image of the Doily's Veldkamp Space

	Towards Parapolar Spaces
	References

