#
Superfields, Nilpotent Superfields and Superschemes^{ †}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Superspaces and Scalar Superfields

#### 2.1. Some Mathematical Definitions

**Definition**

**1.**

**Example**

**1.**

**Definition**

**2.**

**Remark**

**1.**

**Definition**

**3.**

**Definition**

**4.**

#### 2.2. Superfields

**Scalar superfields on ${A}^{1|1}$**

**Spacetime is a point**

**Definition**

**5.**

**Example**

**2.**

**Example**

**3.**

**Example**

**4.**

## 3. The Even Rules Principle

**Remark**

**2.**

**Definition**

**6.**

**Theorem**

**1.**

**Proof.**

- ${v}_{1},{v}_{2}$ even. Then, we may take ${b}_{1}={b}_{2}=1$ (in an arbitrary algebra $\mathcal{B}$) and:$$f({v}_{1}\otimes {v}_{2}):={f}_{\mathcal{B}}({v}_{1}\otimes {v}_{2})\phantom{\rule{0.166667em}{0ex}}.$$
- ${v}_{1}$ even, ${v}_{2}$ odd. Then, we take for example $\mathcal{B}=\mathsf{\Lambda}\left[\xi \right]$, ${b}_{1}=1$, and ${b}_{2}=\xi $. The equality:$${f}_{\mathcal{B}}({v}_{1}\otimes \xi {v}_{2})=\xi f({v}_{1}\otimes {v}_{2})$$
- ${v}_{1}$ odd, ${v}_{2}$ odd. It is enough to consider $\mathcal{B}=\mathsf{\Lambda}[{\xi}^{1},{\xi}^{2}]$, and the equality:$${f}_{\mathcal{B}}({\xi}^{1}{v}_{1}\otimes {\xi}^{2}{v}_{2})=-{\xi}^{1}{\xi}^{2}f({v}_{1}\otimes {v}_{2})$$

**Example**

**5.**

**Remark**

**3**

## 4. How to Deal with Algebraic Constraints

#### 4.1. Schemes and Superschemes

**Example**

**6.**

**Definition**

**7.**

**Definition**

**8.**

#### 4.2. Constraint ${\mathsf{\Phi}}^{2}=0$

#### 4.3. General Constraint $f\left(\mathsf{\Phi}\right)=0$

**Remark**

**4.**

**Remark**

**5.**

#### 4.4. Cubic Constraint with Two Superfields

#### 4.5. Cubic Constraint with an Arbitrary Number of Superfields

## 5. A Non-Algebraic Constraint

## 6. Observables and Nilpotent Variables

**Example**

**7.**

- 1.
- We consider the ring of polynomials in one variable $F=\mathbb{C}\left[x\right]$. The prime ideals of F are of the form ${\mathfrak{p}}_{a}=(x-a)$, $a\in \mathbb{C}$ or the ideal $\left(0\right)$. It is not difficult to see that the residue field at ${\mathfrak{p}}_{a}$ is $\kappa \left({\mathfrak{p}}_{a}\right)\cong \mathbb{C}$ and $\kappa \left(\left(0\right)\right)$ is the field of rational functions.
- 2.
- If the ground field is $\mathbb{R}$, we have that every irreducible polynomial in $\mathbb{R}\left[x\right]$ generates a prime ideal. We still have the maximal ideals as ${\mathfrak{p}}_{a}=(x-a)$ that give all the points of $\mathbb{R}$. At them, the residue field is $\kappa \left({\mathfrak{p}}_{a}\right)\cong \mathbb{R}$. However, for example, the irreducible polynomial ${x}^{2}+1$ also generates a prime ideal. It is not difficult to realize that the elements of the residue field are of the form $a+xb$, with $a,b\in \mathbb{R}$ and x such that ${x}^{2}+1=0$, so $\kappa \left(({x}^{2}+1)\right)\cong \mathbb{C}$.

## 7. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A. Some Basic Definitions

**Definition**

**A1.**

**Definition**

**A2.**

- 1.
- ${\mathrm{res}}_{U,U}=\mathrm{id}$.
- 2.
- ${\mathrm{res}}_{V,U}\circ {\mathrm{res}}_{W,V}={\mathrm{res}}_{W,U}$ for all $U\subset V\subset W\subset \left|X\right|$.

**Example**

**A1.**

- 1.
- Continuous, differentiable, real analytic, or complex analytic functions on a topological space are all sheaves of algebras.
- 2.
- Sections of a vector bundle over a topological space are a sheaf of modules over some algebra of functions.
- 3.
- Constant functions over a topological space are, generically, only a presheaf. If the space is connected, then the sheaf condition is satisfied. Furthermore, on a not necessarily connected space, one can define the sheaf of locally constant functions, that is functions that are constant on an open neighborhood of each point.

**Definition**

**A3.**

**Definition**

**A4.**

## Appendix B. Notation for Spinors

## Appendix C. Supersymmetry Transformations

## References

- Berezin, F.A.; Leites, D.A. Supermanifolds. Dokl. Akad. Nauk. SSSR
**1975**, 224, 505–508. [Google Scholar] - Kostant, B. Graded manifolds, graded Lie theory and prequantisation. In Lecture Notes in Mathematics 570; Reetz, B.K.A., Ed.; Springer: Berlin/Heidelberg, Germany, 1977; pp. 177–306. [Google Scholar]
- Leites, D.A. Introduction to the theory of supermanifolds. Uspekhi Mat. Nauk.
**1975**, 35, 1–64. [Google Scholar] [CrossRef] - Manin, Y.I. Gauge Field Theory and Complex Geometry; Springer: Berlin, Germany, 1988; pp. 45–98. [Google Scholar]
- Deligne, P.; Morgan, J.W. Notes on Supersymmetry (following J. Bernstein). In Quantum Fields and Strings: A Course for Mathematicians, Vol 1; Deligne, P., Etingof, P., Freed, D.S., Jeffrey, L., Kazhdan, D., Morgan, J., Morrison, D.R., Witten, E., Eds.; AMS: Providence, RI, USA, 1999; pp. 32–58. [Google Scholar]
- Varadarajan, V.S. Supersymmetry for Mathematicians: An Introduction. Courant Lecture Notes, 11; AMS: Providence, RI, USA, 2004. [Google Scholar]
- Carmeli, C.; Caston, L.; Fioresi, R.; Dimitrov, I. Mathematical Foundations of Supersymmetry. EMS Serie Lectures in Mathematics; EMS: Zurich, Switzerland, 2011. [Google Scholar]
- Fioresi, R.; Lledó, M.A. The Minkowski and Conformal Superspaces: The Classical and the Quantum Pictures; World Scientific Publishing: Singapore, 2015. [Google Scholar]
- Schwarz, A.S. On the definition of superspace. Theor. Math. Phys.
**1984**, 60, 657–660, (Translated from Russian Teor. Mat. Fiz.**1984**, 60, 37–42). [Google Scholar] - For a Beautiful Exposition of the Meaning of the Functor of Points, See the First Lecture by P. Deligne in the Supermoduli Workshop at the Simons Center (May 2015). Available online: http://scgp.stonybrook.edu/video_portal/results.php?event_id=87 (accessed on 15 January 2017).
- Voronov, A. Mappings of supermanifolds. Theor. Math. Phys.
**1984**, 60, 660–664. [Google Scholar] [CrossRef] - DeWitt, B. Supermanifolds; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Rogers, A. Graded manifolds, supermanifolds and infinite dimensional Grassmann algebras. Comm. Math. Phys.
**1986**, 105, 375–384. [Google Scholar] [CrossRef] - Sachse, C. A categorical formulation of superalgebra and supergeometry. arXiv
**2008**, arXiv:0802.4067. [Google Scholar] - Freed, D. Five Lectures on Supersymmetry; AMS: Providence, RI, USA, 1999. [Google Scholar]
- Eisenbud, D.; Harris, J. The Geometry of Schemes; Springer: New York, NY, USA, 2000. [Google Scholar]
- Bonavolontà, G.; Kotov, A. On the space of supermaps between smooth supermanifolds. arXiv
**2013**, arXiv:1304.0394. [Google Scholar] - Fioresi, R.; Lledó, M.A.; Varadarajan, V.S. The Minkowski and conformal superspaces. J. Math. Phys.
**2007**, 48, 113505. [Google Scholar] [CrossRef] [Green Version] - Volkov, D.V.; Akulov, V.P. Is the neutrino a Goldstone particle? Phys. Lett. B
**1973**, 46, 109–110. [Google Scholar] [CrossRef] - Rocek, M. Linearizing the Volkov-Akulov Model. Phys. Rev. Lett.
**1978**, 41, 451–453. [Google Scholar] [CrossRef] - Casalbuoni, R.; De Curtis, D.; Dominici, D.; Feruglio, F.; Gatto, R. Non-Linear realization of supersymmetry algebra from supersymmetric constraint. Phys. Lett. B
**1989**, 220, 569–575. [Google Scholar] [CrossRef] - Komargodski, Z.; Seiberg, N. From linear SUSY to constrained superfields. JHEP
**2009**, 0909, 066. [Google Scholar] [CrossRef] [Green Version] - Ghilencea, D.M. Comments on the nilpotent constraint on the goldstino superfield. Mod. Phys. Lett. A
**2016**, 31, 1630011. [Google Scholar] [CrossRef] [Green Version] - Brignole, A.; Feruglio, F.; Zwirner, F. On the effective interactions of a light gravitino with matter fermions. JHEP
**1997**, 1811, 1. [Google Scholar] [CrossRef] - Dall’Agata, G.; Ferrara, S.; Zwirner, F. Minimal scalar-less matter-coupled supergravity. Phys. Lett. B
**2016**, 752, 263–266. [Google Scholar] [CrossRef] - Vercnocke, B.; Wrase, T. Constrained superfields from an anti-D3-brane in KKLT. JHEP
**2016**, 1608, 132. [Google Scholar] [CrossRef] [Green Version] - Kallosh, R.; Vercnocke, B.; Wrase, T. String theory origin of constrained multiplets. JHEP
**2016**, 1609, 063. [Google Scholar] [CrossRef] [Green Version] - Castellani, L.; Catenacci, R.; Grassi, P.A. Super quantum mechanics in the integral form formalism. Ann. Inst. Heri Poincaré
**2018**, 19, 1385–17417. [Google Scholar] [CrossRef] [Green Version] - Berezin, F.A. The Method of Second Quantization; Academic Press: New York, NY, USA, 1996. [Google Scholar]
- Berezin, F.A.; Marinov, M.S. Particle spin dynamics as the Grassmann variant of classical mechanics. Ann. Phys.
**1997**, 104, 336–362. [Google Scholar] [CrossRef] - Ferrara, S.; Lledó, M.A. Some aspects of deformations of supersymmetric field theories. JHEP
**2000**, 5, 8. [Google Scholar] [CrossRef] [Green Version] - Lledó, M.A. Deformed supersymmetric field theories. Mod. Phys. Lett. A
**2001**, 16, 305–310. [Google Scholar] [CrossRef] - Kontsevich, M. Deformation quantization of Poisson manifolds, I. Lett. Math. Phys.
**2003**, 66, 157–216. [Google Scholar] [CrossRef] [Green Version] - Fioresi, R.; Lledó, M.A.; Varadarajan, V.S. On the deformation quantization of algebraic varieties. Int. J. Math.
**2005**, 4, 419–435. [Google Scholar] [CrossRef] [Green Version] - Kontsevich, M. Deformation quantization of algebraic varieties. Lett. Math. Phys.
**2006**, 56, 271–294. [Google Scholar] [CrossRef] [Green Version] - Ferrara, S.; Wess, J.; Zumino, B. Supergauge multiplets and superfields. Phys. Lett. B
**1974**, 51, 239–241. [Google Scholar] [CrossRef] [Green Version]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lledó, M.A.
Superfields, Nilpotent Superfields and Superschemes. *Symmetry* **2020**, *12*, 1024.
https://doi.org/10.3390/sym12061024

**AMA Style**

Lledó MA.
Superfields, Nilpotent Superfields and Superschemes. *Symmetry*. 2020; 12(6):1024.
https://doi.org/10.3390/sym12061024

**Chicago/Turabian Style**

Lledó, María Antonia.
2020. "Superfields, Nilpotent Superfields and Superschemes" *Symmetry* 12, no. 6: 1024.
https://doi.org/10.3390/sym12061024