On the Nature of γ-th Arithmetic Zeta Functions
Abstract
:1. Introduction
2. Algebraic Values of
- , since ;
- If , then for all ;
- If , then for all ;
- If and , then ;
- If , then .
2.1. The Number Is Algebraic
- (i)
- If , then ;
- (ii)
- If , then .
2.2. The Number Is Transcendental
3. Schanuel’s Conjecture Versus Exceptional Set of
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Cashewll, E.D.; Everett, C.J. The ring of number-theoretic functions. Pac. J. Math. 1959, 9, 975–985. [Google Scholar] [CrossRef]
- McCarthy, P.J. Introduction to Arithmetic Functions, 1st ed.; Springer: New York, NY, USA, 1985. [Google Scholar]
- Nichita, F.F. On Transcendental Numbers. Axioms 2014, 3, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Marcus, S.; Nichita, F.F. On Transcendental Numbers: New Results and a Little History. Axioms 2018, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Hwang, K.-W.; Ryoo, C.S. Some Symmetric Identities for the Multiple (p, q)-Hurwitz-Euler eta Function. Symmetry 2019, 11, 645. [Google Scholar] [CrossRef] [Green Version]
- Rong, J.; Xu, J. Three Results on the Nonlinear Differential Equations and Differential-Difference Equations. Mathematics 2019, 7, 539. [Google Scholar] [CrossRef] [Green Version]
- Trojovský, P. Algebraic Numbers as Product of Powers of Transcendental Numbers. Symmetry 2019, 11, 887. [Google Scholar] [CrossRef] [Green Version]
- Carlitz, L. Independence of arithmetic functions. Duke Math. J. 1952, 19, 65–70. [Google Scholar] [CrossRef]
- Laohakosol, V.; Kongsakorn, K.; Leerawat, U. Algebraic independence test of arithmetic functions using Jacobians. J. Sci. Soc. Thail. 1989, 15, 133–138. [Google Scholar] [CrossRef]
- Huang, J.; Marques, D.; Mereb, M. Algebraic values of transcendental functions at algebraic points. Bull. Aust. Math. Soc. 2010, 82, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Gelfond, A.O. Sur le septième problème de Hilbert. Investia Akad. Nauk. 1934, 7, 623–630. [Google Scholar]
- Schneider, T. Transzendenzuntersuchungen periodischer funktionen: I transzendenz von potenzen; II transzendenzeigenschaften elliptischer funktionen. J. Reine Angew. Math. 1934, 172, 65–74. [Google Scholar]
- Lang, S. Introduction to Transcendental Numbers, 1st ed.; Addison-Wesley Publishing Co.: Reading, MA, USA, 1966. [Google Scholar]
- Ramachandra, K. Contributions to the theory of transcendental numbers I. Acta Arith. 1967, 14, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Ramachandra, K. Contributions to the theory of transcendental numbers II. Acta Arith. 1968, 14, 73–88. [Google Scholar] [CrossRef]
- Cheng, C.; Dietel, B.; Herblot, M.; Huang, J.; Krieger, H.; Marques, D.; Mason, J.; Mereb, M.; Wilson, S.R. Some consequences of Schanuel’s conjecture. J. Number Theory 2009, 129, 1464–1467. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trojovský, P. On the Nature of γ-th Arithmetic Zeta Functions. Symmetry 2020, 12, 790. https://doi.org/10.3390/sym12050790
Trojovský P. On the Nature of γ-th Arithmetic Zeta Functions. Symmetry. 2020; 12(5):790. https://doi.org/10.3390/sym12050790
Chicago/Turabian StyleTrojovský, Pavel. 2020. "On the Nature of γ-th Arithmetic Zeta Functions" Symmetry 12, no. 5: 790. https://doi.org/10.3390/sym12050790
APA StyleTrojovský, P. (2020). On the Nature of γ-th Arithmetic Zeta Functions. Symmetry, 12(5), 790. https://doi.org/10.3390/sym12050790