# Fully Quantum String Representation of a Wilson Loop in the Finite-Temperature 3D Yang–Mills Theory

## Abstract

**:**

## 1. Introduction

## 2. PS Term from the Quartic Cumulant

## 3. Summary

## Funding

## Conflicts of Interest

## References

- Makeenko, Y.M. Methods of Contemporary Gauge Theory; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Antonov, D. Monopole-based scenarios of confinement and deconfinement in 3D and 4D. Universe
**2017**, 3, 50. [Google Scholar] [CrossRef] [Green Version] - Wilson, K.G. Confinement of quarks. Phys. Rev. D
**1974**, 10, 2445–2459. [Google Scholar] [CrossRef] - Dosch, H.G. Gluon condensate and effective linear potential. Phys. Lett. B
**1987**, 190, 177–181. [Google Scholar] [CrossRef] [Green Version] - Marquard, U.; Dosch, H.G. Potential and sum-rule approach in QCD. Phys. Rev. D
**1987**, 35, 2238–2243. [Google Scholar] [CrossRef] [PubMed] - Dosch, H.G.; Simonov, Y.A. The area law of the Wilson loop and vacuum field correlators. Phys. Lett. B
**1988**, 205, 339–344. [Google Scholar] [CrossRef] - Polchinski, J.; Strominger, A. Effective string theory. Phys. Rev. Lett.
**1991**, 67, 1681–1684. [Google Scholar] [CrossRef] [PubMed] - Polyakov, A.M. Gauge Fields and Strings; Harwood Academic Publishers: Chur, Switzerland, 1987. [Google Scholar]
- Lüscher, M. Symmetry-breaking aspects of the roughening transition in gauge theories. Nucl. Phys. B
**1981**, 180, 317–329. [Google Scholar] [CrossRef] - Alvarez, O. Static potential in string models. Phys. Rev. D
**1981**, 24, 440–449. [Google Scholar] [CrossRef] - Antonov, D. String nature of confinement in (non-)Abelian gauge theories. Surv. High Energy Phys.
**2000**, 14, 265–355. [Google Scholar] [CrossRef] [Green Version] - Antonov, D. Nonperturbative Methods in Gauge Theories; Pisa University Press: Pisa, Italy, 2013. [Google Scholar]
- Kornelis, W.; Dosch, H.G. Higher cumulants in the cluster expansion in QCD. Nucl. Phys. Proc. Suppl.
**2001**, 96, 426–431. [Google Scholar] [CrossRef] [Green Version] - Meggiolaro, E. Field strength correlators in QCD: New fits to the lattice data. Phys. Lett. B
**1999**, 451, 414–421. [Google Scholar] [CrossRef] [Green Version] - Di Giacomo, A.; Dosch, H.G.; Shevchenko, V.I.; Simonov, Y.A. Field correlators in QCD: Theory and applications. Phys. Rept.
**2002**, 372, 319–368. [Google Scholar] [CrossRef] [Green Version] - Antonov, D.; Ebert, D. Confining properties of Abelian(-projected) theories. Eur. Phys. J. C
**2000**, 12, 349–359. [Google Scholar] [CrossRef] [Green Version] - Karabali, D.; Kim, C.; Nair, V.P. On the vacuum wavefunction and string tension of Yang–Mills theories in (2+1) dimensions. Phys. Lett. B
**1998**, 434, 103–109. [Google Scholar] [CrossRef] [Green Version] - Nair, V.P. Three ideas on magnetic mass. arXiv
**1998**, arXiv:hep-th/9809086. [Google Scholar] - Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I. QCD and resonance physics. Theoretical foundations. Nucl. Phys. B
**1979**, 147, 385–447. [Google Scholar] [CrossRef] - Bialas, P.; Daniel, L.; Morel, A.; Petersson, B. Thermodynamics of SU(3) gauge theory in 2+1 dimensions. Nucl. Phys. B
**2009**, 807, 547–565. [Google Scholar] [CrossRef] [Green Version] - Bialas, P.; Daniel, L.; Morel, A.; Petersson, B. Three-dimensional finite temperature SU(3) gauge theory in the confined region and the string picture. Nucl. Phys. B
**2010**, 836, 91–99. [Google Scholar] [CrossRef] [Green Version] - Akhmedov, E.T.; Chernodub, M.N.; Polikarpov, M.I.; Zubkov, M.A. Quantum theory of strings in an Abelian Higgs model. Phys. Rev. D
**1996**, 53, 2087–2095. [Google Scholar] [CrossRef] [PubMed] [Green Version]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Antonov, D.
Fully Quantum String Representation of a Wilson Loop in the Finite-Temperature 3D Yang–Mills Theory. *Symmetry* **2020**, *12*, 688.
https://doi.org/10.3390/sym12050688

**AMA Style**

Antonov D.
Fully Quantum String Representation of a Wilson Loop in the Finite-Temperature 3D Yang–Mills Theory. *Symmetry*. 2020; 12(5):688.
https://doi.org/10.3390/sym12050688

**Chicago/Turabian Style**

Antonov, Dmitry.
2020. "Fully Quantum String Representation of a Wilson Loop in the Finite-Temperature 3D Yang–Mills Theory" *Symmetry* 12, no. 5: 688.
https://doi.org/10.3390/sym12050688