# The Effect of Fractional Time Derivative of Bioheat Model in Skin Tissue Induced to Laser Irradiation

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Mathematical Model

## 3. Results and Discussions

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Mahjoob, S.; Vafai, K. Analytical characterization of heat transport through biological media incorporating hyperthermia treatment. Int. J. Heat Mass Transf.
**2009**, 52, 1608–1618. [Google Scholar] [CrossRef] - Gabay, I.; Abergel, A.; Vasilyev, T.; Rabi, Y.; Fliss, D.M.; Katzir, A. Temperature-controlled two-wavelength laser soldering of tissues. Lasers Surg. Med.
**2011**, 43, 907–913. [Google Scholar] [CrossRef] [PubMed] - Zhou, J.; Chen, J.; Zhang, Y. Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation. Comput. Biol. Med.
**2009**, 39, 286–293. [Google Scholar] [CrossRef] [PubMed] - Pennes, H.H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol.
**1948**, 1, 93–122. [Google Scholar] [CrossRef] [PubMed] - Cattaneo, C. A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compt. Rendu
**1958**, 247, 431–433. [Google Scholar] - Vernotte, P. Les paradoxes de la theorie continue de l’equation de la chaleur. Compt. Rendu
**1958**, 246, 3154–3155. [Google Scholar] - Hobiny, A.D.; Abbas, I.A. Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source. Int. J. Heat Mass Transf.
**2018**, 124, 1011–1014. [Google Scholar] [CrossRef] - Gupta, P.K.; Singh, J.; Rai, K. Numerical simulation for heat transfer in tissues during thermal therapy. J. Therm. Biol.
**2010**, 35, 295–301. [Google Scholar] [CrossRef] - Gupta, P.K.; Singh, J.; Rai, K.; Rai, S. Solution of the heat transfer problem in tissues during hyperthermia by finite difference–decomposition method. Appl. Math. Comput.
**2013**, 219, 6882–6892. [Google Scholar] [CrossRef] - Dillenseger, J.-L.; Esneault, S. Fast FFT-based bioheat transfer equation computation. Comput. Biol. Med.
**2010**, 40, 119–123. [Google Scholar] [CrossRef] [Green Version] - Zhu, D.; Luo, Q.; Zhu, G.; Liu, W. Kinetic thermal response and damage in laser coagulation of tissue. Lasers Surg. Med.
**2002**, 31, 313–321. [Google Scholar] [CrossRef] [PubMed] - Ezzat, M.A.; AlSowayan, N.S.; Al-Muhiameed, Z.I.; Ezzat, S.M. Fractional modelling of Pennes’ bioheat transfer equation. Heat Mass Transf.
**2014**, 50, 907–914. [Google Scholar] [CrossRef] - Ezzat, M.A.; El-bary, A.A.; Al-sowayan, N.S. Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface. Anim. Sci. J.
**2016**, 87, 1304–1311. [Google Scholar] [CrossRef] [PubMed] - Ghanmi, A.; Abbas, I.A. An analytical study on the fractional transient heating within the skin tissue during the thermal therapy. J. Therm. Biol.
**2019**, 82, 229–233. [Google Scholar] [CrossRef] - Mondal, S.; Sur, A.; Kanoria, M. Transient heating within skin tissue due to time-dependent thermal therapy in the context of memory dependent heat transport law. Mech. Based Des. Struct. Mach.
**2019**, 1–15. [Google Scholar] [CrossRef] - Díaz, S.H.; Nelson, J.S.; Wong, B.J. Rate process analysis of thermal damage in cartilage. Phys. Med. Biol.
**2002**, 48, 19. [Google Scholar] [CrossRef] [Green Version] - Abbas, I.A.; Zenkour, A.M. The effect of rotation and initial stress on thermal shock problem for a fiber-reinforced anisotropic half-space using Green-Naghdi theory. J. Comput. Theor. Nanosci.
**2014**, 11, 331–338. [Google Scholar] [CrossRef] - Abbas, I.A.; El-Amin, M.; Salama, A. Effect of thermal dispersion on free convection in a fluid saturated porous medium. Int. J. Heat Fluid Flow
**2009**, 30, 229–236. [Google Scholar] [CrossRef] - Abbas, I.A. The effects of relaxation times and a moving heat source on a two-temperature generalized thermoelastic thin slim strip. Can. J. Phys.
**2015**, 93, 585–590. [Google Scholar] [CrossRef] - El-Naggar, A.; Kishka, Z.; Abd-Alla, A.M.; Abbas, I.A.; Abo-Dahab, S.M.; Elsagheer, M. On the initial stress, magnetic field, voids and rotation effects on plane waves in generalized thermoelasticity. J. Comput. Theor. Nanosci.
**2013**, 10, 1408–1417. [Google Scholar] [CrossRef] - Marin, M. Cesaro means in thermoelasticity of dipolar bodies. Acta Mech.
**1997**, 122, 155–168. [Google Scholar] [CrossRef] - Marin, M.; Ellahi, R.; Chirilă, A. On solutions of Saint-Venant’s problem for elastic dipolar bodies with voids. Carpathian J. Math.
**2017**, 33, 219–232. [Google Scholar] - Marin, M.; Nicaise, S. Existence and stability results for thermoelastic dipolar bodies with double porosity. Contin. Mech. Thermodyn.
**2016**, 28, 1645–1657. [Google Scholar] [CrossRef] - Abbas, I.A. Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties. Meccanica
**2014**, 49, 1697–1708. [Google Scholar] [CrossRef] - Zenkour, A.M.; Abbas, I.A. Magneto-thermoelastic response of an infinite functionally graded cylinder using the finite element method. J. Vib. Control.
**2014**, 20, 1907–1919. [Google Scholar] [CrossRef] - Gardner, C.M.; Jacques, S.L.; Welch, A. Light transport in tissue: Accurate expressions for one-dimensional fluence rate and escape function based upon Monte Carlo simulation. Lasers Surg. Med.
**1996**, 18, 129–138. [Google Scholar] [CrossRef] - Stehfest, H. Algorithm 368: Numerical inversion of Laplace transforms [D5]. Commun. ACM
**1970**, 13, 47–49. [Google Scholar] [CrossRef] - Henriques, F., Jr.; Moritz, A.R. Studies of thermal injury: I. The conduction of heat to and through skin and the temperatures attained therein. A theoretical and an experimental investigation. Am. J. Pathol.
**1947**, 23, 530. [Google Scholar] - Moritz, A.R.; Henriques, F., Jr. Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am. J. Pathol.
**1947**, 23, 695. [Google Scholar] - Askarizadeh, H.; Ahmadikia, H. Analytical analysis of the dual-phase-lag model of bioheat transfer equation during transient heating of skin tissue. Heat Mass Transf.
**2014**, 50, 1673–1684. [Google Scholar] [CrossRef]

**Figure 4.**Temperature profile in skin tissue for different values of the laser exposure time ${\tau}_{p}$.

**Figure 5.**Temperature history at skin surface for different values of the laser exposure time ${\tau}_{p}$.

**Figure 6.**The variation of thermal damage with time for different values of the laser exposure time ${\tau}_{p}$.

**Figure 7.**Temperature profile in skin tissue for different values of thermal relaxation time ${\tau}_{o}$.

**Figure 8.**Temperature history at skin surface for different values of thermal relaxation time ${\tau}_{o}$.

**Figure 9.**The variation of thermal damage with time for different values of thermal relaxation time ${\tau}_{o}$.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hobiny, A.; Alzahrani, F.; Abbas, I.; Marin, M.
The Effect of Fractional Time Derivative of Bioheat Model in Skin Tissue Induced to Laser Irradiation. *Symmetry* **2020**, *12*, 602.
https://doi.org/10.3390/sym12040602

**AMA Style**

Hobiny A, Alzahrani F, Abbas I, Marin M.
The Effect of Fractional Time Derivative of Bioheat Model in Skin Tissue Induced to Laser Irradiation. *Symmetry*. 2020; 12(4):602.
https://doi.org/10.3390/sym12040602

**Chicago/Turabian Style**

Hobiny, Aatef, Faris Alzahrani, Ibrahim Abbas, and Marin Marin.
2020. "The Effect of Fractional Time Derivative of Bioheat Model in Skin Tissue Induced to Laser Irradiation" *Symmetry* 12, no. 4: 602.
https://doi.org/10.3390/sym12040602