Existence Results for a Nonlocal Coupled System of Differential Equations Involving Mixed Right and Left Fractional Derivatives and Integrals
Abstract
:1. Introduction
2. Preliminaries
3. Existence and Uniqueness Results
- There exist such that and
- There exist such that and
- There exist real constants , and such that, ,
4. Example
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Sabatier, J.; Agrawal, O.P.; Machado, J.A.T. (Eds.) Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Peng, L.; Zhou, Y. Bifurcation from interval and positive solutions of the three-point boundary value problem for fractional differential equations. Appl. Math. Comput. 2015, 257, 458–466. [Google Scholar] [CrossRef]
- Cui, Y.; Ma, W.; Sun, Q.; Su, X. New uniqueness results for boundary value problem of fractional differential equation. Nonlinear Anal. Model. Control 2018, 23, 31–39. [Google Scholar] [CrossRef]
- Alsaedi, A.; Ahmad, B.; Alghanmi, M. Extremal solutions for generalized Caputo fractional differential equations with Steiltjes-type fractional integro-initial conditions. Appl. Math. Lett. 2019, 91, 113120. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Alruwaily, Y.; Ntouyas, S.K. Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Math. 2020, 5, 1446–1461. [Google Scholar] [CrossRef]
- Liang, S.; Wang, L.; Yin, G. Fractional differential equation approach for convex optimization with convergence rate analysis. Optim. Lett. 2020, 14, 145–155. [Google Scholar] [CrossRef]
- Iskenderoglu, G.; Kaya, D. Symmetry analysis of initial and boundary value problems for fractional differential equations in Caputo sense. Chaos Solitons Fractals 2020, 134, 109684. [Google Scholar] [CrossRef] [Green Version]
- Cen, Z.; Liu, L.-B.; Huang, J. A posteriori error estimation in maximum norm for a two-point boundary value problem with a Riemann–Liouville fractional derivative. Appl. Math. Lett. 2020, 102, 106086. [Google Scholar] [CrossRef]
- Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton– zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar] [CrossRef]
- Carvalho, A.; Pinto, C.M.A. A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int. J. Dyn. Control 2017, 5, 168–186. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, G.; Li, C.; Kurths, J. Chaos synchronization in fractional differential systems. Philos. Trans. R. Soc. A 2013, 371, 20120155. [Google Scholar] [CrossRef]
- Ben-Avraham, D.; Havlin, S. Diffusion and Reactions in Fractals and Disordered Systems; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Wang, S.; Xu, M. Axial Couette flow of two kinds of fractional viscoelastic fluids in an annulus. Nonlinear Anal. Real World Appl. 2009, 10, 1087–1096. [Google Scholar] [CrossRef]
- Deshpande, A.S.; Daftardar-Gejji, V. On disappearance of chaos in fractional systems. Chaos Solitons Fractals 2017, 102, 119–126. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House: Chicago, IL, USA, 2006. [Google Scholar]
- Sergei, F.; Vladimir, C.; Toshiyuki, H. Application of fractional differential equations for modeling the anomalous diffusion of contaminant from fracture into porous rock matrix with bordering alteration Zone. Transp. Porous Media 2010, 81, 187–205. [Google Scholar]
- Zhang, Y.; Sun, H.-G.; Stowell, H.H.; Zayernouri, M.; Hansen, S.E. A review of applications of fractional calculus in Earth system dynamics. Chaos Solitons Fractals 2017, 102, 29–46. [Google Scholar] [CrossRef]
- Kavvas, M.L.; Ercan, A. Time-space fractional governing equations of unsteady open channel flow. J. Hydrol. Eng. 2016, 22, 04016052. [Google Scholar] [CrossRef]
- Raghavan, R. Fractional derivatives: Application to transient flow. J. Petrol. Sci. Eng. 2011, 80, 7–13. [Google Scholar] [CrossRef]
- Kavvas, M.L.; Tu, T.; Ercan, A.; Polsinelli, J. Fractional governing equations of transient groundwater flow in confined aquifers with multi-fractional dimensions in fractional time. Earth Syst. Dynam. 2017, 8, 921–929. [Google Scholar] [CrossRef]
- Tarasov, V.E. Review of some promising fractional physical models. Int. J. Mod. Phys. B 2013, 27, 1330005. [Google Scholar] [CrossRef] [Green Version]
- Kulish, V.V. Application of fractional calculus to fluid mechanics. J. Fluids Eng. 2002, 124, 803–806. [Google Scholar] [CrossRef]
- Zhou, Y.; Peng, L.; Ahmad, B.; Alsaedi, A. Energy methods for fractional Navier-Stokes equations. Chaos Solitons Fractals 2017, 102, 78–85. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, Y.; Zhang, X. Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative. Nonlinear Anal. Real World Appl. 2012, 13, 513–523. [Google Scholar] [CrossRef]
- Henderson, J.; Luca, R.; Tudorache, A. On a system of fractional differential equations with coupled integral boundary conditions. Fract. Calc. Appl. Anal. 2015, 18, 361–386. [Google Scholar] [CrossRef]
- Ahmad, B.; Luca, R. Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions. Fract. Calc. Appl. Anal. 2018, 21, 423–441. [Google Scholar] [CrossRef]
- Alsaedi, A.; Ahmad, B.; Aljoudi, S.; Ntouyas, S.K. A study of a fully coupled two-parameter system of sequential fractional integro-differential equations with nonlocal integro-multipoint boundary conditions. Acta Math. Sci. Ser. B (Engl. Ed.) 2019, 39, 927–944. [Google Scholar] [CrossRef]
- Ahmad, B.; Alghamdi, N.; Alsaedi, A.; Ntouyas, S.K. A system of coupled multi-term fractional differential equations with three-point coupled boundary conditions. Fract. Calc. Appl. Anal. 2019, 22, 601–618. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Al-Sulami, H.H. A study of coupled systems of mixed order fractional differential equations and inclusions with coupled integral fractional boundary conditions. Adv. Differ. Equ. 2020, 1, 73. [Google Scholar] [CrossRef] [Green Version]
- Atanackovic, T.M.; Stankovic, B. On a differential equation with left and right fractional derivatives. Fract. Calc. Appl. Anal. 2007, 10, 139–150. [Google Scholar] [CrossRef]
- Hernández-Hernández, M.E.; Kolokoltsov, V.N. On the solution of two-sided fractional ordinary differential equations of Caputo type. Fract. Calc. Appl. Anal. 2016, 19, 1393–1413. [Google Scholar] [CrossRef] [Green Version]
- Kolokoltsov, V. On fully mixed and multidimensional extensions of the Caputo and Riemann–Liouville derivatives, related Markov processes and fractional differential equations. Fract. Calc. Appl. Anal. 2015, 18, 1039–1073. [Google Scholar] [CrossRef] [Green Version]
- Zimbardo, G.; Perri, S. On the Fractional Diffusion-Advection Equation for Fluids and Plasmas. Fluids 2019, 4, 62. [Google Scholar] [CrossRef] [Green Version]
- Khaldi, R.; Guezane-Lakoud, A. Higher order fractional boundary value problems for mixed type derivatives. J. Nonlinear Funct. Anal. 2017, 30, 9. [Google Scholar]
- Lakoud, A.G.; Khaldi, R.; Kilicman, A. Existence of solutions for a mixed fractional boundary value problem. Adv. Differ. Equ. 2017, 2017, 164. [Google Scholar] [CrossRef]
- Guezane-Lakoud, A.; Khaldi, R.; Torres, D.F.M. On a fractional oscillator equation with natural boundary conditions. Progr. Fract. Differ. Appl. 2017, 3, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. Existence theory for nonlocal boundary value problems involving mixed fractional derivatives. Nonlinear Anal. Model. Control 2019, 24, 937–957. [Google Scholar] [CrossRef]
- Ahmad, B.; Broom, A.; Alsaedi, A.; Ntouyas, S.K. Nonlinear integro-differential equations involving mixed right and left fractional derivatives and integrals with nonlocal boundary data. Mathematics 2020, 8, 336. [Google Scholar] [CrossRef] [Green Version]
- Hardy, G.H. Notes on some points in the integral calculus. Messenger Math. 1918, 47, 145–150. [Google Scholar]
- Smart, D.R. Fixed Point Theorems; Cambridge University Press: Cambridge, UK, 1974. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
K. Ntouyas, S.; Broom, A.; Alsaedi, A.; Saeed, T.; Ahmad, B. Existence Results for a Nonlocal Coupled System of Differential Equations Involving Mixed Right and Left Fractional Derivatives and Integrals. Symmetry 2020, 12, 578. https://doi.org/10.3390/sym12040578
K. Ntouyas S, Broom A, Alsaedi A, Saeed T, Ahmad B. Existence Results for a Nonlocal Coupled System of Differential Equations Involving Mixed Right and Left Fractional Derivatives and Integrals. Symmetry. 2020; 12(4):578. https://doi.org/10.3390/sym12040578
Chicago/Turabian StyleK. Ntouyas, Sotiris, Abrar Broom, Ahmed Alsaedi, Tareq Saeed, and Bashir Ahmad. 2020. "Existence Results for a Nonlocal Coupled System of Differential Equations Involving Mixed Right and Left Fractional Derivatives and Integrals" Symmetry 12, no. 4: 578. https://doi.org/10.3390/sym12040578
APA StyleK. Ntouyas, S., Broom, A., Alsaedi, A., Saeed, T., & Ahmad, B. (2020). Existence Results for a Nonlocal Coupled System of Differential Equations Involving Mixed Right and Left Fractional Derivatives and Integrals. Symmetry, 12(4), 578. https://doi.org/10.3390/sym12040578