New Generalized Hermite-Hadamard Inequality and Related Integral Inequalities Involving Katugampola Type Fractional Integrals
Abstract
1. Introduction
2. New Generalized Fractional Integrals Identity and New Integral Inequality for Katugampola Fractional Integrals
3. Generalized Hermite-Hadamard Inequality and Related Integral Inequalities for Katugampola Fractional Integral on Fractal Sets
- 1.
- If and , we have the trapezoid inequality:
- 2.
- For , we have
- 1.
- For , we get
- 2.
- If , we have
4. Applications to Special Means
- The arithmetic mean:; , with .
- The generalized log-mean:; , with .
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peajcariaac, J.E.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Academic Press: New York, NY, USA, 1992. [Google Scholar]
- Dragomir, S.S.; Pearce, C. Selected topics on Hermite-Hadamard inequalities and applications. Math. Prepr. Arch. 2003, 3, 463–817. [Google Scholar]
- Mehrez, K.; Agarwal, P. New Hermite–Hadamard type integral inequalities for convex functions and their applications. J. Comput. Appl. Math. 2019, 350, 274–285. [Google Scholar] [CrossRef]
- Gozpinar, A.; Set, E.; Dragomir, S.S. Some generalized Hermite-Hadamard type inequalities involving fractional integral operator for functions whose second derivatives in absolute value are s-convex. Acta Math. Univ. Comen. 2019, 88, 87–100. [Google Scholar]
- Korus, P. An extension of the Hermite–Hadamard inequality for convex and s-convex functions. Aequationes Math. 2019, 93, 527–534. [Google Scholar] [CrossRef]
- Ozcan, S.; Iscan, I. Some new Hermite-Hadamard type inequalities for s-convex functions and their applications. J. Inequalities Appl. 2019, 2019, 201. [Google Scholar] [CrossRef]
- Kılıçman, A.; Saleh, W. Some generalized Hermite-Hadamard type integral inequalities for generalized s-convex functions on fractal sets. Adv. Differ. Equ. 2015, 2015, 1. [Google Scholar] [CrossRef][Green Version]
- Almutairi, O.; Kılıçman, A. Integral inequalities for s-convexity via generalized fractional integrals on fractal sets. Mathematics 2020, 8, 53. [Google Scholar] [CrossRef]
- Almutairi, O.; Kılıçman, A. New fractional inequalities of midpoint type via s-convexity and their applications. J. Inequalities Appl. 2019, 2019, 1–19. [Google Scholar] [CrossRef]
- Dragomir, S.S. Symmetrized convexity and Hermite-Hadamard type inequalities. J. Math. Inequalities 2016, 10, 901–918. [Google Scholar] [CrossRef]
- Dragomir, S.S. Inequalities of Hermite-Hadamard type for functions of selfadjoint operators and matrices. J. Math. Inequalities 2017, 11, 241–259. [Google Scholar] [CrossRef]
- Prabseang, J.; Nonlaopon, K.; Tariboon, J. Quantum Hermite-Hadamard inequalities for double integral and q-differentiable convex functions. J. Math. Inequalities 2019, 13, 675–686. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Torebek, B.T. Some Hermite–Hadamard type inequalities in the class of hyperbolic p-convex functions. Rev. De La Real Acad. De Cienc. Exactas Fis. Y Naturales. Ser. A. Mat. 2019, 113, 3413–3423. [Google Scholar] [CrossRef]
- Fernandez, A.; Baleanu, D.; Srivastava, H.M. Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 517–527. [Google Scholar] [CrossRef]
- de Oliveira, E.C.; Jarosz, S.; Vaz, J., Jr. Fractional calculus via Laplace transform and its application in relaxation processes. Commun. Nonlinear Sci. Numer. Simul. 2019, 69, 58–72. [Google Scholar] [CrossRef]
- Sabatier, J.A.T.M.J.; Agrawal, O.P.; Machado, J.T. Advances in Fractional Calculus; Springer: Dordrecht, The Netherlands, 2007; Volume 4. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional calculus. In Fractals and Fractional Calculus in Continuum Mechanics; Springer: Vienna, Austria, 1997; pp. 223–276. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Zhu, C.; Fečkan, M.; Wang, J. Fractional integral inequalities for differentiable convex mappings and applications to special means and a midpoint formula. J. Appl. Math. Stat. Inform. 2012, 8, 21–28. [Google Scholar] [CrossRef]
- Mo, H.; Sui, X. Generalized-convex functions on fractal sets. Abstract Appl. Anal. 2014, 2014, 254737. [Google Scholar] [CrossRef]
- Tomar, M.; Agarwal, P.; Choi, J. Hermite-Hadamard type inequalities for generalized convex functions on fractal sets style. Bol. Da Soc. Parana. De Matemática 2020, 38, 101–116. [Google Scholar] [CrossRef]
- Wang, J.; Fečkan, M. Fractional Hermite-Hadamard Inequalities; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2018; Volume 5. [Google Scholar]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
- Katugampola, U.N. Mellin transforms of generalized fractional integrals and derivatives. Appl. Math. Comput. 2015, 257, 566–580. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef]
- Zeng, S.; Baleanu, D.; Bai, Y.; Wu, G. Fractional differential equations of Caputo–Katugampola type and numerical solutions. Appl. Math. Comput. 2017, 315, 549–554. [Google Scholar] [CrossRef]
- Mahmudov, N.I.; Emin, S. Fractional-order boundary value problems with Katugampola fractional integral conditions. Adv. Differ. Equ. 2018, 2018, 1–17. [Google Scholar] [CrossRef]
- Kermausuor, S. Generalized Ostrowski-type inequalities involving second derivatives via the Katugampola fractional integrals. J. Nonlinear Sci. Appl. 2019, 12, 509–522. [Google Scholar] [CrossRef][Green Version]
- Mumcu, I.; Set, E.; Akdemir, A.O. Hermite-Hadamard type inequalities for harmonically convex functions via Katugampola fractional integrals. Miskolc Math. Notes 2019, 20, 409–424. [Google Scholar] [CrossRef]
- Toplu, T.; Set, E.; Iscan, I.; Maden, S. Hermite-Hadamard type inequalities for p-convex functions via katugampola fractional integrals. Facta Univ. Ser. Math. Inform. 2019, 34, 149–164. [Google Scholar]
- Dubey, R.S.; Goswami, P. Some fractional integral inequalities for the Katugampola integral operator. AIMS Math. 2019, 4, 193–198. [Google Scholar] [CrossRef]
- Mercer, A.M. An improvement of the Grüss inequality. J. Inequal. Pure Appl. Math. 2005, 6, 93. [Google Scholar]
- Lupinska, B.; Odzijewicz, T. A Lyapunov-type inequality with the Katugampola fractional derivative. Math. Methods Appl. Sci. 2018, 41, 8985–8996. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, O.; Kılıçman, A. New Generalized Hermite-Hadamard Inequality and Related Integral Inequalities Involving Katugampola Type Fractional Integrals. Symmetry 2020, 12, 568. https://doi.org/10.3390/sym12040568
Almutairi O, Kılıçman A. New Generalized Hermite-Hadamard Inequality and Related Integral Inequalities Involving Katugampola Type Fractional Integrals. Symmetry. 2020; 12(4):568. https://doi.org/10.3390/sym12040568
Chicago/Turabian StyleAlmutairi, Ohud, and Adem Kılıçman. 2020. "New Generalized Hermite-Hadamard Inequality and Related Integral Inequalities Involving Katugampola Type Fractional Integrals" Symmetry 12, no. 4: 568. https://doi.org/10.3390/sym12040568
APA StyleAlmutairi, O., & Kılıçman, A. (2020). New Generalized Hermite-Hadamard Inequality and Related Integral Inequalities Involving Katugampola Type Fractional Integrals. Symmetry, 12(4), 568. https://doi.org/10.3390/sym12040568