Nonexistence of Global Weak Solutions for a Nonlinear Schrödinger Equation in an Exterior Domain
Abstract
:1. Introduction
- (i)
- ,
- (ii)
- , ,
- (iii)
- ,
2. Global Weak Solutions
3. Main Result
- (i)
- If , then
- (ii)
- If , then
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Glassey, R.T. On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation. J. Math. Phys. 1977, 18, 1794–1797. [Google Scholar] [CrossRef]
- Ogawa, T.; Tsutsumi, Y. Blow-up of H1 solution for the nonlinear Schrödinger equation. J. Differ. Equ. 1991, 92, 317–330. [Google Scholar] [CrossRef] [Green Version]
- Bourgain, J.; Wang, W. Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity. Ann. Sc. Norm. Sup. Pisa Cl. Sci. IV Ser. 1997, 25, 197–215. [Google Scholar]
- Ginibre, J.; Velo, G. On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal. 1979, 32, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Merle, F. Limit of the solution of the nonlinear Schrödinger equation at the blow-up time. J. Func. Anal. 1989, 84, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Tsutsumi, M. Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrödinger equation. SIAM J. Math. Anal. 1984, 15, 357–366. [Google Scholar] [CrossRef]
- Ikeda, M.; Wakasugi, Y. Small data blow-up of L2-solution for the nonlinear Schrödinger equation without gauge invariance. Differ. Integral Equ. 2013, 26, 1275–1285. [Google Scholar]
- Ikeda, M.; Inui, T. Small data blow-up of L2 or H1-solution for the semilinear Schrödinger equation without gauge invariance. J. Evol. Equ. 2015, 15, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fino, A.Z.; Dannawi, I.; Kirane, M. Blow-up of solutions for semilinear fractional Schrödinger equations. J. Integral Equ. Appl. 2018, 30, 67–80. [Google Scholar] [CrossRef]
- Kirane, M.; Nabti, A. Life span of solutions to a nonlocal in time nonlinear fractional Schrödinger equation. Z. Angew. Math. Phys. 2015, 66, 1473–1482. [Google Scholar] [CrossRef]
- Fujita, H. On the blowing up of solutions of the Cauchy problem for ut = Δu + u1+α. J. Fac. Sci. Univ. Tokyo. 1966, 13, 109–124. [Google Scholar]
- Levine, H.A.; Zhang, Q.S. The critical Fujita number for a semilinear heat equation in exterior domains with homogeneous Neumann boundary values. Proc. Roy. Soc. Edinburgh Sect. A 2000, 130, 591–602. [Google Scholar] [CrossRef] [Green Version]
- Bandle, C.; Levine, H.A.; Zhang, Q.S. Critical exponents of Fujita type for inhomogeneous parabolic equations and systems. J. Math. Anal. Appl. 2000, 251, 624–648. [Google Scholar] [CrossRef] [Green Version]
- Jleli, M.; Samet, B. On the critical exponent for nonlinear Schrödinger equations without gauge invariance in exterior domains. J. Math. Anal. Appl. 2019, 469, 188–201. [Google Scholar] [CrossRef]
- Mitidieri, E.; Pohozaev, S.I. The absence of global positive solutions to quasilinear elliptic inequalities. Doklady Math. 1998, 57, 250–253. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, A.; Jleli, M.; Samet, B.; Vetro, C. Nonexistence of Global Weak Solutions for a Nonlinear Schrödinger Equation in an Exterior Domain. Symmetry 2020, 12, 394. https://doi.org/10.3390/sym12030394
Alqahtani A, Jleli M, Samet B, Vetro C. Nonexistence of Global Weak Solutions for a Nonlinear Schrödinger Equation in an Exterior Domain. Symmetry. 2020; 12(3):394. https://doi.org/10.3390/sym12030394
Chicago/Turabian StyleAlqahtani, Awatif, Mohamed Jleli, Bessem Samet, and Calogero Vetro. 2020. "Nonexistence of Global Weak Solutions for a Nonlinear Schrödinger Equation in an Exterior Domain" Symmetry 12, no. 3: 394. https://doi.org/10.3390/sym12030394